ADDENDUM NO. 1

RE: Item \#2, March 1, 2023 Letting - P 0011(141), NH 0013(146), PCN 06FR, 06WW, Marshall, Spink County - Approach Slab Repair, Polymer Chip Seal \& Berm Repair

TO WHOM IT MAY CONCERN:

The following addenda to the plans shall be inserted and made a part of your proposal for the referenced project.

SPECIAL PROVISIONS: No Revisions

SDEBS BID PROPOSAL: The electronic bid proposal for this contract has been revised to include the changes associated with this addendum. Bidders must log in to the SDEBS to retrieve and incorporate these changes into their bid.

Bid Items were added:

Bid Item 491E0005 "Two Coat Bridge Deck Polymer Chip Seal"
Bid Item 491E0110 "Abrasive Blasting of Bridge Deck"
Bid Item 491E0120 "Bridge Deck Grinding"
Bid Item 491E0130 "Concrete Removal, Class A"
Bid item 491E0140 "Concrete Removal, Class B"
Bid Item 491E0172 "Concrete patching Material, Bridge Deck"

PLANS: Please destroy sheets $2,23-35, \& 43-56$ and replace with the enclosed sheets, dated $2 / 15 / 23$. Sheet 45A was added. The revisions to sheets $23-35$ and sheets $43-56$ included adding the Consultant Engineer's Stamp, adding a Polymer Chip Seal to structure 58-101-321, and other miscellaneous revisions. Notable plan revisions are listed here:

Sheet 2 and Sheet 44: \quad Structure No. 58-101-321 - PCN 06WW

Bid Items were added:

Bid Item 491 E0005 "Two Coat Bridge Deck Polymer Chip Seal"
Bid Item 491E0110 "Abrasive Blasting of Bridge Deck"
Bid Item 491E0120 "Bridge Deck Grinding"
Bid Item 491E0130 "Concrete Removal, Class A"
Bid item 491E0140 "Concrete Removal, Class B"
Bid Item 491 E0172 "Concrete patching Material, Bridge Deck"

Sheet 25: Eliminated one of the previously listed Galvanic Anode suppliers

Sheet 31: Added detail Y and a revised detail Z

Sheet 32: Removed detail Z

Sheet 43: Added Two Coat Bridge Deck Polymer Chip Seal and related information and quantities

Sheet 44: SCOPE OF BRIDGE WORK AND SEQUENCE OF OPERATIONS note was revised

Sheet 45: Added BRIDGE DECK GRINDING note and TWO COAT BRIDGE DECK POLYMER CHIP SEAL note. AS-BUILT ELEVATION SURVEY note and SLOPE PROTECTION (RR Coordination) note was moved to sheet 45A

Sheet 45A: Sheet added to include CONCRETE PATCHING MATERIAL, BRIDGE DECK note.
Sheet 47: Section B-B was revised.

Sheet 49: Added detail Y and a revised detail Z

Sheet 50: Revised Bending Details and Cutting Diagrams and removed detail Z.

```
Sincerely,
Sam Weisgram
Engineering Supervisor
CC: Mark Peterson, Aberdeen Region Engineer
Bruce Schroeder, Aberdeen Area Engineer
```

ESTIMATE OF QUANTITIES

GENERAL QUANITITES - NH-P 0011(141) - PCN 06FR

BID ITEM NUMBER	ITEM	QUANTITY	UNIT
009E0010	Mobilization	Lump Sum	LS
110E0400	Remove Drop inlet	2	Each
110E0730	Remove Beam Guardrail	475.0	Ft
110E0810	Remove Rubrail	48.0	Ft
110E1010	Remove Asphalt Concrete Pavement	785.0	SqYd
110E1700	Remove Silt Fence	100	Ft
120E0020	Unclassified Excavation	Lump Sum	Ls
260E1010	Base Course	908.0	Ton
320E1200	Asphalt Concrete Composite	416.5	Ton
332E0010	Cold Milling Asphalt Concrete	694	SqYd
450E0122	18" RCP Class 2, Furnish	66	Ft
450E0130	18" RCP, Install	66	Ft
450E2008	$18^{\prime \prime}$ RCP Flared End, Furnish	2	Each
450E2009	18" RCP Flared End, Install	2	Each
462E0100	Class M6 Concrete	2.3	CuYd
464E0100	Controlled Density Fill	62.7	CuYd
480E0100	Reinforcing Steel	416	Lb
630E0500	Type 1 MGS	250.0	Ft
630E1500	Type 1 Guardrail Transition	4	Each
630E2017	MGS MASH Flared End Terminal	4	Each
632E2220	Guardrail Delineator	16	Each
632 E 2110	Type 2 Object Marker Back to Back	2	Each
633E1220	High Build Waterborne Pavement Marking Paint, 4" White	1,000	Ft
633E1222	High Build Waterborne Pavement Marking Paint, 4" Yellow	125	Ft
634E0010	Flagging	15.0	Hour
634E0110	Trafic Control Signs	176.0	SqFt
634E0120	Traffic Control, Miscellaneous	Lump Sum	Ls
634 E 525	Linear Delineation System Panel, Barrier Mounted	30	Each
634 E 0600	4" Temporary Pavement Marking Tape Type I	2,344	Ft
634E0700	Traffic Control Movable Concrete Barrier	30	Each
634E0750	Temporary Concrete Barrier End Protection	2	Each
670E0200	Type A Frame and Grate	2	Each
670E5400	Precast Drop Inlet Collar	2	Each
730E0100	Cover Crop Seeding	0.5	Bu
734E0010	Erosion Control	Lump Sum	LS
734 E 0602	Low Flow Silt Fence	350	Ft
734E0610	Mucking Silt Fence	25	CuYd
734E0620	Repair Silt Fence	100	Ft
734 E 0845	Sediment Control at Inlet with Frame and Grate	2	Each
831 E 0300	Reinforcement Fabric (MSE)	690	SqYd

SPECIFICATIONS

Standard Specifications for Roads and Bridges, 2015 Edition and Required Provisions, Supplemental Specifications, and Special Provisions as included in the Proposal.

GENERAL QUANITITES - NH 0013(146) - PCN 06WW
Structure No. 46-110-123 - PCN 06FR

BID ITEM NUMBER	ITEM	quantity	UNIT
009E0010	Mobilization	Lump Sum	Ls
110E0400	Remove Drop Inlet	2	Each
110E0700	Remove 3 Cable Guardrail	1,120	Ft
110E0730	Remove Beam Guardrail	475.0	Ft
110E0740	Remove 3 Cable Guardrail Anchor Assembly	8	Each
110E1010	Remove Asphalt Concrete Pavement	495.0	Yd
110E1700	Remove Silt Fence	100	Ft
120E0020	Unclassified Excavation	Lump Sum	LS
120E0600	Contractor Furnished Borrow Excavation	115	Cur
260E1010	Base Course	828.0	Ton
320E1200	Asphalt Concrete Composite	477.4	Ton
332E0010	Cold Milling Asphalt Concrete	1,298	SqYd
462E0100	Class M6 Concrete	1.9	Yd
480E0100	Reinforcing Steel	364	Lb
630E0500	Type 1 MGS	550.0	Ft
630E1501	Type 1 Retrofit Guardrail Transition	4	Each
630E2017	MGS MASH Flared End Terminal	4	Each
632E2220	Guardrail Delineator	20	Each
632E2510	Type 2 Object Marker Back to Back	1	Each
633E1220	High Build Waterborne Pavement Marking Paint, 4" White	2,050	Ft
633E1222	High Build Waterborne Pavement Marking Paint, 4" Yellow	1,435	Ft
634E0010	Flagging	15.0	Hour
634E0110	Traffic Control Signs	177.6	SqFt
634E0120	Traffic Control, Miscellaneous	Lump Sum	Ls
634E0525	Linear Delineation System Panel, Barrier Mounted	44	Each
634E0600	4" Temporary Pavement Marking Tape Type I	3,544	Ft
634E0700	Traffic Control Movable Concrete Barrier	44	Each
634E0750	Temporary Concrete Barrier End Protection	2	ch
634E0900	Portable Temporary Traffic Control Signal	5	Unit
670E0200	Type A Frame and Grate	2	Each
670E5400	Precast Drop Inlet Collar	2	Each
730E0100	Cover Crop Seeding	0.5	Bu
734E0010	Erosion Control	Lump Sum	LS
734 E 0602	Low Flow Silt Fence	250	Ft
$734 \mathrm{E0610}$	Mucking Silt Fence	18	CuYd
734E0620	Repair Silt Fence	75	Ft
734 E 0845	Sediment Control at Inlet with Frame and Grate	2	Each
831E0300	Reinforcement Fabric (MSE)	70	SqYd
998E0100	Railroad Protective Insurance	Lump Sum	LS

BID ITTEM NUMER	ITEM	QUANTITY	UNIT
009E3310	Bridge Elevation Survey	Lump Sum	LS
110E00100	Remove Concrete Bridge Approach Slab	311.4	SqYd
110E0020	Remove Bridge Railing	157	Ft
120E0010	Unclassified Excavation	48	CuYd
410E2600	Membane Sealant Expansion Joint	79.8	Ft
430E0200	Bridge End Embankment	3	CuYd
430E0300	Granular Bridge End Backill	60.0	CuYd
430E0510	Approach Slab Underdrain Excavation	3.0	CuYd
430E0700	Precast Concrete Headwall for Drain	4	Each
460E0070	Class A45 Concrete, Bridge Repair	12.8	CuYd
460E0150	Concrete Approach Slab for Bridge	181.4	SqYd
460E0160	Concrete Approach Sleeper Slab for Bridge	39.8	SqYd
460E0300	Breakout Structural Concrete	2.2	CuYd
460E0380	Install Dowel in Concrete	164	Each
480E0200	Epoxy Coated Reinforcing Steel	1,646	Lb
480E0504	No. 4 Rebar Splice	28	Each
480E0505	No. 5 Rebar Splice	32	Each
480E0506	No. 6 Rebar Splice	44	Each
480E5000	Galvanic Anode	116	Each
680E0040	4" Underdrain Pipe	130	Ft
680E2500	Porous Backill	5.6	Ton

Structure No. 58-101-321 - PCN 06WW

BID ITEM NUMBER	ITEM	QUANTITY	UNIT
009E3310	Bridge Elevation Survey	Lump Sum	LS
110E0010	Remove Concrete Bridge Approach Slab	323.2	SqYd
120E0010	Unclassified Excavation	68	CuYd
120E3120	Bridge Berm Repair	2	Each
$120 \mathrm{E7} 000$	Select Granular Backill	255.2	Ton
410E2600	Membrane Sealant Expansion Joint	83.8	Ft
430E0200	Bridge End Embankment	2	CuYd
430E0300	Granular Bridge End Backill	85.0	CuYd
460E0150	Concrete Approach Slab for Bridge	281.4	SqYd
460E0160	Concrete Approach Sleeper Slab for Bridge	41.8	SqYd
462E0250	Cellular Grout	4.8	CuYd
480E0504	No. 4 Rebar Splice	40	Each
480E0505	No. 5 Rebar Splice	32	Each
480E0506	No. 6 Rebar Splice	64	Each
491E0005	Two Coat Bridge Deck Polymer Chip Seal	1,085.4	SqYd
491 E0110	Abrasive Blasting of Bridge Deck	1,085.4	SqYd
491E0120	Bridge Deck Grinding	1,085.4	SqYd
491E0130	Concrete Removal, Class A	4.0	SqYd
491 E0140	Concrete Removal, Class B	4.0	SqYd
491E0172	Concrete Patching Material, Bridge Deck	45.0	CuFt
680E0224	4" PVC Outlet Pipe	20	Ft
831 E 1030	Perforated Geocell	3,910	SqFt

PLAN

INDEX OF BRIDGE SHEETS

Sheet No． 1 －Layout for Upgrading
Sheet No． 2 －Estimate of Structure Quantities and Notes
Sheet No． 3 －Notes（Continued）
Sheet No． 5 －End Block Rail Modification（A）
Sheet No． 6 －End Block Rail Modification（B）
Sheet No． 7 －Details of Bridge End Backill
Sheet No． 8 －Approach Slab Details（A）
Sheet No． 9 －Approach Slab Details（B）
Sheet No． 10 －Approach Slab Details（C）
leet No． 11 －Approach Slab Joint Deta
Sheet No．13－As－Buitit Survey（B）
Sheet No． 14 －Standard Plate No． $430.50 \& 460.02$
Sheet No． 15 －Standard Plate No． 630.92
Sheet Nos． 16 thru 20 －Original Construction Plans

LAYOUT FOR UPGRADING
86＇－6＂CONTINUOUS CONCRETE BRIDGE 38＇－0＂ROADWAY OVER CROW CREEK STR．No．46－110－123 PCN 06FR

S．D．DEPT．OF TRANSPORTATION
MAY 2022
$\underset{\substack{\text { DRAFTED } \\ \text { GAC }}}{\text { B }}$
BRIDGE ENGINEER

ESTIMATE OF STRUCTURE QUANTITIES

ITEM No.	DESCRIPTION	QUANIITY	UNIT
009E3310	Bridge Bevation Survey	1	LS
110E0010	Remove Concrete Bridge Approach Slab	311.4	SqYd
110E0020	Remove Bridge Railing	57	Ft
120E0010	Unclassified Excavation	48	CuYd
410E2600	Membrane Sealant Expansion Joint	79.8	ft
430E0200	Bridge End Embankment	3	CuYd
430Е0300	Granular Bridge End Backfill	60.0	Curd
430 E0510	Approach Slab Underdrain Excavation	3.0	curd
430E0700	Precast Concrete Headw all for Drain	4	Each
460E0070	Class A45 Concrete, Bridge Repair	12.8	curd
460E0150	Concrete Approach Slab for Bridge	181.4	SqYd
460E0160	Concrete Approach Sleeper Slab for Bridge	39.8	SqYd
460E0300	Breakout Structural Concrete	2.2	CuYd
460E0380	Install Dow el in Concrete	164	Each
480E0200	Epoxy Coated Reinforcing Steel	1,646	Lb
480E0504	No. 4 Rebar Splice	28	Each
480E0505	No. 5 Rebar Splice	32	Each
480E0506	No. 6 Rebar Splice	44	Each
480E5000	Galvanic Anode	116	Each
680E0040	4" Underdrain Pipe	130	ft
680E2500	Porous Backifll	5.6	Ton

SPECIFICATIONS

1. Design Specifications: AASHTO Standard Specifications for Highway Bridges 17th Edition using Allowable Stress Design.
2. Construction Specifications: South Dakota Standard Specifications for Construction Specifications: South Dakota Standard Specifications for
Roads and Bridges, 2015 Edition and Required Provisions, Supplemental
Specifications and Special Provisions as included in the Proposal.

DETAILS AND DIMENSIONS OF EXISTING BRIDGE

1. All details and dimensions of the existing bridge, contained in these plans, are based on the original construction plans and shop plans and are provided as information only. It is the Contractor's responsibility to
inspect and verify the actual field conditions and any necessary as-built inspect and verify the actual field conditions and any necessary as-built dimensions affecting the satisfactory completion of the work required for this project.
2. The stationing shown in the original construction plans is reversed from the current project. As such, labels for the begin and end of bridge as well as the substructure units are reversed
3. The elevations shown in the original construction plans are not based on 1988 (NAVD88).

All work on this structure will be accomplished with the traffic control shown elsewhere in the plans. Alternate sequence of operations may be submitted by the Contractor for approval by the Engineer a minimum of two weeks prior to the preconstruction meeting.

1. Remove the existing bridge railing and end blocks for the first phase of construction.
2. Remove existing approach slabs for the first phase of construction and salvage existing Z1 bars in place
3. Excavate required area for placement of bridge end backfill for the first phase of construction.
4. Perform underdrain excavation for the first phase of construction
5. Place bridge end backfill and underdrain system material for the first phase of construction
6. Place approach and sleeper slabs to the correct grade for the first phase of construction
7. Replace sleeper slab joints with approved Membrane Sealant Expansion Joint for the first phase of construction.
8. Place a new concrete bridge rail on top of the existing curb with end blocks for the first phase of construction.
9. Switch traffic and repeat steps 1 to 8 for the second phase of construction

GENERAL CONSTRUCTION - BRIDGE

1. All mild reinforcing steel will conform to ASTM A615, Grade 60.
2. All exposed concrete corners and edges will be chamfered $3 / 4$-inch unless noted otherwise in the plans. Match existing chamfer if the existing chamfer differs
3. Use 2-inch clear cover on all reinforcing steel except as shown otherwise.
4. The Contractor will only imprint one year-plate on the structure. The year plate will contain the date the existing bridge was built and will be located as specified and detailed on Standard Plate No.460.02.
5. Barrier curbs and end blocks will be built perpendicular to the grade
6. Request for construction joints or reinforcing steel splices at points other than those shown, must be submitted to the Engineer for prior approval. If additional splices are approved, no payment will be allowed for the added quantity of reinforcing steel.
7. Snap ties, if used in the barrier curb formwork, will be corrosion resistant. The corrosion resistant ties will be inert in concrete and compatible with reinforcing steel.
8. All lap splices are contact lap splices unless noted otherwise

DESIGN MIX OF CONCRETE

1. Class A45 Concrete will be used for End Blocks, Curb for Bridge Approach Slab for Bridge and Approach Sleeper Slab for Bridge

INSTALL DOWEL IN CONCRETE

1. Holes drilled in the existing concrete will be true and normal or as shown in the plans. Drilling holes using a core drill will not be allowed. Care will be taken not to damage the existing reinforcing steel. It is likely that some of the existing reinforcing steel shown in the original construction plans may have been placed out of position during original construction. Therefore, prior to the start of drilling any holes in the concrete, an effort will be made by Department forces to mark on the concrete surface where practical any locations of the in place reinforcing steel. In spite of this precaution, the Contractor can still expect to encounter and have to drill through reinforcing steel or sisting reinforcing steel If the Coved by Engineer to miss or he unused drill holes will be completely filled with the epoxy resin as approved by the Engineer.
2. The epoxy resin mixture will be of a type for bonding steel to hardened concrete and will conform to AASHTO M235 Type IV Grade 3 (Equivalent to ASTM C881, Type IV, Grade 3). Grade 1, 2 or 3 may be used for vertical dowels and Grade 3 epoxy will be used for all horizontal dowels.
3. The diameter of the drilled holes will not be less than $1 / 8$-inch greater, nor more than $3 / 8$-inch greater than the diameter of the dowels or as per the Manufacturer's recommendations. The drilled reach the back of the hole to ensure that all debris or loose material has been removed prior to epoxy injection.
4. Mix epoxy resin as recommended by the Manufacturer and apply by an injection method as approved by the Engineer. Beginning at the back of the drilled holes, fill the holes $1 / 3$ to $1 / 2$ full of epoxy, or as recommended by the Manufacturer, prior to insertion of the steel bar holes prior to steel bar insertion Rotate the steel bar during installation to eliminate voids and ensure complete bonding of the bar. Insertion of the bars by the dipping or painting method will no be allowed.

ESTIMATE OF STRUCTURE QUANTITIES AND NOTES FOR
86' - 6" CONTINUOUS CONCRETE BRIDGE
STR. NO. 46-110-123
MAY 2022

INSTALL DOWEL IN CONCRETE (CONTINUED)

5. No loads will be applied to the epoxy grouted dowel bars until the epoxy resin has had sufficient time to cure as specified by the epoxy resin manufacturer
6. Dowel bars will be deformed bars conforming to ASTM A615 Grade 60
7. The cost of epoxy resin, dowels, installation, and other incidental items will be incidental to the contract unit price per each for Install Dowel in Concrete.

NOTICE - LEAD BASED PAINT

Be advised that the paint on the steel surfaces of the existing structure is a paint containing lead. The contractor should plan his/her operations according and inform his/her employees of the hazards of lead exposure

REMOVAL OF EXISTING BRIDGE RAIL

1. The existing rail and rail posts will be completely removed by the Contractor and disposed of in accordance with the Environmental Commitments. If the Contractor elects to salvage the rail and rail posts for his own use, they must be removed from view of
satisfaction of the Engineer prior to project completion.
2. The existing rail anchor bolts protruding from the concrete will be cut of and ground flush with the concrete surface as approved by the Engineer The exposed ends will be coated with a zich-rich galvanizing paint in conformance with ASTM A780
3. The bridge railing to be removed consists of the steel rail, and any hardware attaching the railing to the bridge. The cost of all labor, tools materials, and incidentals necessary to cut and remove the steel ral the contract price per foot for Remove Bridge Railing

SURFACE FINISH

1. All of the surfaces visible to the traveling public on the new concrete barrier on curbs and end blocks will be given a Class B Commercial Texture Finish in accordance with Section 460.3 L.1.c. of the Constructio Specifications. Visible surfaces include the front face and top of the barrier on curb and all faces of the end blocks.
2. The concrete surfaces requiring the application of the Commercia Texture Finish will be prepared in accordance with the manufacturer's recommendations. The Contractor will submit a product data sheet, or an approved equal, documenting all pertinent information with regard to preparation of the concrete surfaces, materials and equipment required mixing requirements, and application procedures to the Engineer in and approval.
3. For informational purposes the amount of surface area requiring the Class B Commercial Texture Finish is 243 square feet for phase 1 and 243 square feet for phase 2
4. Any damage to the commercial texture finish during the construction including abrasion from traffic due to the traffic control will be repaired by the Contractor, as approved by the Engineer, at no expense to the Department
5. The cost of the commercial texture finish will be included in the contract unit price per cubic yard for Class A45 Concrete, Bridge Repair. This payment will be full compensation for furnishing all materials, labor, tools and equipment necessary or incidental to the application of this finish.

CONCRETE BREAKOUT

1. The existing end blocks and curb portion indicated will be broken out to the limits shown on the plans. Breakout limits will be defined with a $3 / 4^{\prime \prime}$ deep sawcut (unless specified otherwise in these plans), where practical, as approved by the Engineer. Reinforcing steel that is exposed and is scheduled for use in the new construction will be cleaned and straightened to the satisfaction of the Engineer. Care will be taken not to damage the existing reinforcing steel that is to be reused in the new construction during concrete breakout. Any reinforcing steel that is damaged during concrete breakout will be
replaced or repaired, as approved by the Engineer, by the replaced or repaired, as approved
2. All broken out concrete and discarded reinforcing bars will be disposed of by the Contractor. Any disposal of discarded material will be in accordance with the Environmental Commitment Notes.
3. During concrete removal operations, no broken-out concrete will be allowed to fall onto the creek.
4. The contract unit price per cubic yard for Breakout Structural Concrete will include breaking out concrete, cleaning, straightening reinforcing steel, and disposal of all broken out material.

GALVANIC ANODE

1. The Contractor will furnish and place galvanic anodes in the concrete repair areas specified in this plan set.
2. The galvanic anodes will be supplied as one of the following:
a. Sentinel Silve
uclid Chemical Company
19218 Redwood Road
Phone: (800) 321-7628 Website: www.euclidchemical.com
b. Sika FerroGard 670 Sika Corporation US 201 Polito Avenue Lyndhurst, NJ 07071 Phone: (800) 933-7452 Website: http://usa.sika.com
3. The anodes will be placed in accordance with manufacturer's recommendations and as approved by the Engineer. The anodes shop drawings of the galvanic anode installation including locations of the individual anodes to the Office of Bridge Design.
4. The anodes will be placed with a minimum $3 / /^{\prime \prime}$ cover and will be se in embedding mortar per the manufacturer's recommendations. The anodes will be fully encased in the concrete repair material. Where adequate cover does not exist, a concrete pocket will be chipped out behind the anode to provide minimum cover. The Contractor may need to chip around the reinforcing bar locally at the anode the connection location will be cleaned per the manufacturer's ecommendations to provide electrical connection and mechanical bond.
5. The electrical continuity of the connections and reinforcing steel will be confirmed per the manufacturer's recommendations.
6. In area of concrete repair where anodes are placed, the epox coating on the reinforcing steel will not require touch up.
7. The Contractor will provide manufacturer's product literature and installation instructions to the Engineer 10 days prior to installation.
8. All costs associated with placing anodes including labor, equipment materials and incidentals will be included in the contract unit price per each for Galvanic Anode.
9. The Contractor has the option of providing galvanic strip anodes in place of the Galvanic Anodes for the curb repair. The galvanic strip anodes will conform to the same requirements listed above for Galvanic Anodes will be at no additional cost to the Department The galvanic strip anodes will be supplied as the following or an approved equivalent as approved by the Office of Bridge Design:

NOTES (CONTINUED)
FOR
86' - 6" CONTINUOUS CONCRETE BRIDGE
STR. NO. 46-110-123
MAY 2022

REMOVAL OF CONCRETE BRIDGE APPROACH SLAB

1. The existing concrete approach and sleeper slabs adjacent to the structure will be completely removed by the Contractor.
2. The concrete and reinforcing steel from the removal will be disposed of by the Contractor at an approved site. An appropriate site will be described in the Environmental Commitment Notes in this set of plans
3. The quantity provided for Remove Concrete Bridge Approach Slab is computed using the plan area for the sleeper slab and the plan area for the approach slab determined separately.
4. All labor, tools, equipment and any incidentals necessary for removal and disposal of the existing approach slabs, polymer modified growth joint, and sleeper slabs will be incidental to the contract unit price per square yard for Remove Concrete Bridge Approach Slab.

APPROACH SLAB UNDERDRAIN SYSTEM

A new underdrain system will be placed underneath the sleeper slabs as shown in the plans. The Approach Slab Underdrain System will be constructed in accordance with Section 435 of the Construction Specifications in the plans.

DRAINAGE TUBING

1. The underdrains will be constructed of a PVC pipe system as shown on the plans and meeting the following requirements:

The 4" Dia. Perforated PVC Drain Pipe will be SDR 35 Solvent Weld PVC Pipe conforming to ASTM D3034 and ASTM F758. The 4" Dia PVC Outlet Pipe will be Schedule 40 PVC Pipe conforming to ASTM D1785 designated as PVC 1120, PVC 1220, or PVC 2120. Pip sections will be connected using a PVC Solvent Cement conforming
to ASTM D2564. The Drain Sleeve will conform to ASTM D6707.
2. Care will be taken to ensure that the $4^{\prime \prime}$ Dia. Perforated PVC Drain Pipe (with Drain Sleeve) and the $4^{\prime \prime}$ Dia. PVC Outlet Pipe are not damaged before compaction equipment is allowed over the underdrain system. Any damaged pipes will be replaced by the Contractor at no additional cost to the Department.
3. All labor, tools, equipment, and any incidentals necessary for the installation of 4" Dia. Perforated PVC Drain Pipe (with Drain Sleeve), 4 Dia. PVC Outlet Pipe, SDR Solvent Weld PVC Coupling, and PVC Cement will be incidental to the contract unit price per foot for $4^{\prime \prime}$ Underdrain Pipe

APPROACH SLABS

1. Bridge end backfill will be constructed in accordance with Section 430 of the Construction Specifications except the drainage tubing will be as specified in these notes and as detailed in the plans.
2. Excavation for placement of new approach slabs, sleeper slabs, bridge end backfill, and drainage piping will be done with minimal bridge end backill, and drainage pip
3. Prior to the placement of the Type B Drainage Fabric below the Granular Bridge End Backfill, the existing Select Granular Backfill material will be compacted using at least four complete passes of a Smooth face vibratory roller or vibratory plate compactor. Gravel Cusho whe be placed as required to fill any low spots and achieve the elevation needed for installation of the new bridge end
backill material. The existing and fill material will be thoroughly backfill material. The existing and fill material will be thoroughly watered prior to and during compaction. Gravel Cushion will
4. Excavation required for the placement of Granular Bridge End Backfill and Porous Backfill will be paid for at the contract unit price per cubic yard for Unclassified Excavation as shown on the plan sheet. Measurement will not be made
5. The top of approach slab elevations will be established as provided during construction and subject to the approval of the Engineer. Care will be taken to provide a smooth transition from the bridge deck elevations to the new pavement elevations to prevent any dips or slabs. The maximum rate of grade transition through the approach slab will be $1 / 8$-inch per 10 feet.
6. Sleeper slab riser will be cast with or later than the approach slab. Care will be taken to ensure the correct grade is maintained across the joint.
7. The portion of the sleeper slab below the construction joint may be precast. If the bottom portion of the sleeper slab is precast, the Construction Engineer for approval. In addition, if reinforcing or other details differ from those shown in the plans, the Contractor will submit proposed alternate details for approval.
8. The use of an Engineer approved vibratory screed will be required during placement of Class A45 Concrete for the approach slabs. Concrete placement in front of the screed will be kept parallel to the screed.
9. The concrete in the approach slab will be tined perpendicular to the centerline of the roadway.
10. The new approach slabs and sleeper slabs will have a surface finish as specified in Section 460.3 L. 4 of the Construction Specifications.
11. The concrete approach slabs will be cured in accordance with Section 460.3 M of the Construction Specifications. The minimum 7 day cure time requirement will be waived. The approach slabs will be
cured until a minimum compressive strength of 4,000 psi is reached.
12. Any Gravel Cushion and compaction required to fill any low spots o voids will be paid for at the contract unit price per cubic per yard for Granular Bridge End Backfill. This payment will be full compensation
13. for furnishing, hauling, and placing all materials including disposal of all surplus materials; labor; tools; equipment; and any incidentals necessary to complete this item of work.
14. Concrete Approach Sleeper Slab for Bridge will be paid for at the contract unit price per square yard. This payment will be full compensation for furnishing, hauling, and placing all materials including: concrete, concrete anchors, and reinforcing steel; fo disposal of all surplus materials; labor; tools; equipment; and any
15. Concrete Approach Slab for Bridge will be paid for at the contrac unit price per square yard. This payment will be full compensation fo furnishing, hauling, and placing all materials including: concrete elastic joint sealer, and reinforcing steel; for disposal of all surplus complete this item of work.

AS-BUILT ELEVATION SURVEY

The Contractor will be responsible for producing an as-built elevation survey soon after construction is complete and before the bridge is completely opened to traffic The Contractor will be responsible for
recording the as-built elevations at the locations shown by the table of recording the as-built elevations at the locations shown by the table of
as-built elevations shown in the plans. The completed table will be given to the Engineer who will forward a copy to the Bridge Maintenance Engineer in the Office of Bridge Design and the Senior Region Bridge Engineer. The elevations will be based on the control points provided in the plans. The Contractor will be responsible for verifying the contro points provided in the plans. All costs associated with obtaining the
elevations at the locations shown in the table and for the elevations at he locations shown in table and for the benchmark required will be incidental to the contract lump sum price for Bridg Elevation Survey.

NOTES (CONTINUED)
FOR
86' - 6" CONTINUOUS CONCRETE BRIDGE
STR. NO. 46-110-123
MAY 2022
a1-48Spa.@ $1^{\prime}-6^{\prime \prime}=72^{\prime}-0^{\prime \prime}$

$2^{\prime}-6^{\prime \prime}$
$2^{2}-4$ Sp \qquad $3^{\prime}-0^{\prime \prime}$ \qquad $\underset{-9^{\prime \prime}}{<-6^{\prime \prime}}=$

NOTE: EXisting z1 Bars in Place. Shit new reifforcing as
Sequage
reuired to miss embedded items.

APPROACH SLAB DETAILS (B)
FOR
86' - 6" CONTINUOUS CONCRETE BRIDGE 38'-0" ROADWAY OVER CROW CREEK 0° SKEW
SEC. $2-\mathrm{T} 126 \mathrm{~N}$-R58W NH-P 0011 (141)

MARSHALL COUNTY
S. D. DEPT. OF TRANSPORTATION

MAY 2022

DESIGNEDBY GACICCB	CK. DES. BY MAB	DRAFTED BY GAC	

GENERAL NOTES

1. The Membrane Sealant shall be on the approved product list for Membrane Sealant Expansion Joints 2. The manufacturer shall supppy the membrane seealant in packaging that trecempresses the membrane
 sealant exceeas the
2. The membrane sealant shall provide a water right seal throughout a joint movement range of $+25 \%$
(ninimum) from the specifed joint opening dimension.
3. The membrane sealant shall be supplied in pieces a minimum of 5 feet in length. The foam sealant shall be
4. The bonding adhesive used to attach the membrane sealant to the adjacent concrete shall be approved by
5. Adhesive used to join adjacent pieces of the membrane sealant shall be as recommended by the
6. If styrfoform filler material is used in the construction, it shall be closed cell and water-tight as approved by the

Themin
imum ambient air temperature at the time of joint installation and adhesive curing shall be $40^{\circ} \mathrm{F}$.
9. A techical representative of the membrane sealant manuffacturer shall be present at the job site during Areararion. The technial I representative shall be knowledgeable in the correct procedures for tive
10. Surraces that will be in contact with the membrane sealant shall be thoroughy cleaned by abrasive blasting
 minimum, tivo passes of abrasie las sting with the nozzle held tat ar angle to within 1 It 2 inches of the
suffait will ee required. Cleaning of the surfacees with solvents, wire brushting, or grinding shall not te
permited.
permitted.

1. After abrasive blasting buti immediatill prior ro membrane joint intallation the entire joint cortact surface
 with the adhesive the adjicent surfacess must be dry and clean. The contact surfaces for the joints shall be
2. Individual spliced sections shall be installed as per the manufacturer's recommendations. The membrane to oint installation for foris reveveen.
3. Traffic shall not be allowed on the joint untit the bonding achesive has had time to cure, as recommended by
 moved across the ioint. Any spall areas will be repaired at
replacing adijacent concrete, as approved by the Engineer.
4. The Membrane Sealant Expansion Joint will be measured in feet to the nearest one-tenth foot, complete in lace. Measurement will be made of the overall horizontal le ength. The Membrane Sealant Expansion Jo
will b pe paid for at the contraca t unit price per foot tomplete in place. Payment tor this item shall be full necessary to completete the work in accordance with the plans and the foreregoing specification

Table of Elevations - Approach Roadway									
Location	Elevation								
40 L		$40 M$		$40 C$		$40 N$		$40 R$	
$41 L$		$41 M$		$41 C$		$41 N$		$41 R$	
$42 L$		$42 M$		$42 C$		$42 N$		$42 R$	
$43 L$		$43 M$		$43 C$		$43 N$		$43 R$	
$44 L$		$44 M$		$44 C$		$44 N$		$44 R$	
$45 L$		$45 M$		$45 C$		$45 N$		$45 R$	
$46 L$		$46 M$		$46 C$		$46 N$		$46 R$	
$47 L$		$47 M$		$47 C$		$47 N$		$47 R$	
$48 L$		$48 M$		$48 C$		$48 N$		$48 R$	
$49 L$		$49 M$		$49 C$		$49 N$		$49 R$	
$50 L$		$50 M$		$50 C$		$50 N$		$50 R$	
$51 L$		$51 M$		$51 C$		$51 N$		$51 R$	
$52 L$		$52 M$		$52 C$		$52 N$		$52 R$	
$53 L$		$53 M$		$53 C$		$53 N$		$53 R$	
$54 L$		$54 M$		$54 C$		$54 N$		$54 R$	
$55 L$		$55 M$		$55 C$		$55 N$		$55 R$	
$56 L$		$56 M$		$56 C$		$56 N$		$56 R$	
$57 L$		$57 M$		$57 C$		$57 N$		$57 R$	
$58 L$		$58 M$		$58 C$		$58 N$		$58 R$	
$59 L$		$59 M$		$59 C$		$59 N$		$59 R$	
$60 L$		$60 M$		$60 C$		$60 N$		$50 R$	
$61 L$		$61 M$		$61 C$		$61 N$		$51 R$	
$62 L$		$62 M$		$62 C$		$62 N$		$62 R$	
$63 L$		$63 M$		$63 C$		$63 N$		$63 R$	
$64 L$		$64 M$		$64 C$		$64 N$		$64 R$	

Table of Elevations - Bridge Deck									
Location	Elevation								
$1 L$		$1 M$		$1 C$		$1 N$		$1 R$	
$2 L$		$2 M$		$2 C$		$2 N$		$2 R$	
$3 L$		$3 M$		$3 C$		$3 N$		$3 R$	
$4 L$		$4 M$		$4 C$		$4 N$		$4 R$	
$5 L$		$5 M$		$5 C$		$5 N$		$5 R$	
$6 L$		$6 M$		$6 C$		$6 N$		$6 R$	

Benchmark Description:
B.M.
Lecation Descripition: SW Cormer of Bridge
Elevation:

AS-BUILT SURVEY (A)
FOR
86' - 6" CONTINUOUS CONCRETE BRIDGE 38'-0" ROADWAY OVER CROW CREEK STR. No. 46-110-123

| $\substack{\text { DESIGNED BY } \\ \text { GACICCB }}$ | CK. DES. BY
 MAB | GRAFTED BY
 GAC | |
| :---: | :---: | :---: | :---: | :---: |

Table of Elevations - Approach Slabs and Roadway

Location	Elevation								
$12 L$		$12 M$		$12 C$		$12 N$		$12 R$	
$13 L$		$13 M$		$13 C$		$13 N$		$13 R$	
$14 L$		$14 M$		$14 C$		$14 N$		$14 R$	
$15 L$		$15 M$		$15 C$		$15 N$		$15 R$	
$16 L$		$16 M$		$16 C$		$16 N$		$16 R$	
$17 L$		$17 M$		$17 C$		$17 N$		$17 R$	
$18 L$		$18 M$		$18 C$		$18 N$		$18 R$	
$19 L$		$19 M$		$19 C$		$19 N$		$19 R$	
$20 L$		$20 M$		$20 C$		$20 N$		$20 R$	
$21 L$		$21 M$		$21 C$		$21 N$		$21 R$	
$22 L$		$22 M$		$22 C$		$22 N$		$22 R$	
$23 L$		$23 M$		$23 C$		$23 N$		$23 R$	
$24 L$		$24 M$		$24 C$		$24 N$		$24 R$	
$25 L$		$25 M$		$25 C$		$25 N$		$25 R$	
$26 L$		$26 M$		$26 C$		$26 N$		$26 R$	
$27 L$		$27 M$		$27 C$		$27 N$		$27 R$	
$28 L$		$28 M$		$28 C$		$28 N$		$28 R$	
$29 L$		$29 M$		$29 C$		$29 N$		$29 R$	
$30 L$		$30 M$		$30 C$		$30 N$		$30 R$	
$31 L$		$31 M$		$31 C$		$31 N$		$31 R$	
$32 L$		$32 M$		$32 C$		$32 N$		$32 R$	
$33 L$		$33 M$		$33 C$		$33 N$		$33 R$	
$34 L$		$34 M$		$34 C$		$34 N$		$34 R$	
$35 L$		$35 M$		$35 C$		$35 N$		$35 R$	
$36 L$		$36 M$		$36 C$		$36 N$		$36 R$	
$37 L$		$37 M$		$37 C$		$37 N$		$37 R$	
$38 L$		$38 M$		$38 C$		$38 N$		$38 R$	
$39 L$		$39 M$		$39 C$		$39 N$		$39 R$	

Table of Elevations - Bridge Deck

Location	Elevation								
$6 L$		$6 M$		$6 C$		$6 N$		$6 R$	
$7 L$		$7 M$		$7 C$		$7 N$		$7 R$	
$8 L$		$8 M$		$8 C$		$8 N$		$8 R$	
$9 L$		$9 M$		$9 C$		$9 N$		$9 R$	
$10 L$		$10 M$		$10 C$		$10 N$		$10 R$	
$11 L$		$11 M$		$11 C$		$11 N$		$11 R$	

Bridge Ends	
Location	Elevation
\boldsymbol{C}	
D	

```
NOT:: Suit elvevations Shall be based on the Nationall Seootetic Surve
```



```
l
```

AS-BUILT SURVEY (B)
FOR
86' - 6" CONTINUOUS CONCRETE BRIDGE 38'-0" ROADWAY over crow creek

SEC. 2-T126N-R58W NH-P 0011 (141)

MARSHALL COUNTY
S. D. DEPT. OF TRANSPORTATION

MAY 2022
(13) OF (20)

Rebuild Exising Bridge Berm
with
wefrorarated G Geocell
with Perforated Geocell
See SLOPE PROTECION DETALLS

Sheet No. 1 - Layout for Upgrading
Sheet No. 1 - Layout for Upgrading
Sheet No. 2 - Estimate of Structure Quantities and Notes

Sheet No. 3 A - Notes (Continued)
Sheet No. 4 - Slope Protection Details
Sheet No. 5 - Details of Bridge End Backia
Sheet No. 6 - Approach Slab Details (A)
Sheet No. 7 - Approach Slab Details (B)
Sheet No. 8 - Approach Slab Details (C) Sheet No. 9 - Approach Slab Joint Details Sheet No. 10 - As-Built Survey (A) Sheet No. 11 - As-Buit Survey (B)
Sheet No. 12 - As-Built Survey (C) Sheet No. 13 - As-Built Survey (D) Sheet No. 14 - As-Built Survey (E) Sheet Nos. 15 thru 19 - Original Construction Plans

245' - 5 1/4" CONT. COMP. GIRDER BRIDGE

AYOUT FOR UPGRADING

40'-0" ROADWAY OVER RAILROAD STR. NO. 58-101-32 STR. No. 58 SEC. ${ }^{35}$ 14-T115N-R64W 14-T15N-R4
NH-P 0013(146)

SPINK COUNTY
S. D. DEPT. OF TRANSPORTATION

MAY 2022

ESTIMATE OF STRUCTURE QUANTITIES

ITEM No.	DESCRIPTION	QUANTITY	UNIT
009E3310	Bridge Elevation Survey	1	LS
110E0010	Remove Concrete Bridge Approach Slab	323.2	SqYd
120E0010	Unclassified Excavation	68	CuYd
120E3120	Bridge Berm Repair	2	Each
120E000	Select Granular Backiill	255.2	Ton
410 E 2600	Membrane Sealant Expansion Joint	83.8	Ft
43000200	Bridge End Embankment	2	Curd
43000300	Granular Bridge End Backiill	85.0	curd
46000150	Concrete Approach Slab for Bridge	281.4	SqYd
46000160	Concrete Approach Sleeper Slab for Bridge	41.8	SqYd
462E0250	Celluar Grout	4.8	CuYd
48000504	No. 4 Rebar Spice	40	Each
48000505	No. 5 Rebar Spice	32	Each
48000506	No. 6 Rebar Splice	64	Each
4911E0005	Two Coat Bridge Deck Polymer Chip Seal	1,085.4	SqYd
491 E0110	Abrasive Blasting of Bridge Deck	1,085.4	SqYd
49100120	Bridge Deck Grinding	1,085.4	SqYd
49110130	Concrete Removal, Class A	4.0	SqYd
491E0140	Concrete Removal, Class B	4.0	SqYd
49110172	Concrete Patching Material, Bridge Deck	45.0	CuFt
680E0224	4" PVC Outlet Pipe	20	Ft
831 E 1030	Perforated Geocell	3,910	SqFt

SPECIFICATIONS

1. Design Specifications: AASHTO Standard Specifications for Highway Bridges 17th Edition using Allowable Stress Design.
2. Construction Specifications: South Dakota Standard Specifications for Roads and Bridges, 2015 Edition and Required Provisions, Supplemental Specifications and Special Provisions as included in the Proposal.

DETAILS AND DIMENSIONS OF EXISTING BRIDGE

1. All details and dimensions of the existing bridge, contained in these plans, are based on the original construction plans and shop plans and are provided as information only. It is the Contractor's responsibility to inspect and verify the actual field conditions and any necessary as-built dimensions affecting the satisfactory completion of the work required for this project.
2. The elevations shown in the original construction plans are not based on the National Geodetic Survey (NGS) North American Vertical Datum of the National Ge
1988 (NAVD88).

SCOPE OF BRIDGE WORK \& SEQUENCE OF OPERATIONS

All work on this structure will be accomplished with the traffic control shown elsewhere in the plans. Alternate sequence of operations may be submitted by the contractor for approval by the engineer a minimum of two weeks prior to the preconstruction meeting.

1. Perform Bridge Deck Grinding for the first phase of construction.
2. Where necessary, repair the bridge deck by removing and patching all loose and delaminated concrete from the bridge deck surface for the first phase of construction.
3. Clean the bridge deck surface with abrasive blasting for the first phase of construction.
4. Place the Two Coat Bridge Deck Polymer Chip Seal for the first phase of construction
5. Remove the existing approach and sleeper slabs for the first phase of construction.
6. Remove existing flowable fill and field installed concrete bench blocks.
7. Inspect exposed backwall and add select granular backfill as necessary to fill gap behind exposed backwall for the first phase of construction
8. Inspect under abutment and add cellular grout as necessary for the first phase of construction.
9. Replace approach slabs and sleeper slabs to the correct grade for the first phase of construction.
10. Replace sleeper slab joints with approved Membrane Sealant Expansion Joint for the first phase of construction.
11. Reshape berm slope by placing the perforated geocell filled with granular backfill for the first phase of construction.
12. Switch traffic and repeat steps 1 through 12 for the second phase of construction.

GENERAL CONSTRUCTION - BRIDGE

1. All mild reinforcing steel will conform to ASTM A615, Grade 60.
2. All exposed concrete corners and edges will be chamfered $3 / 4^{\prime \prime}$ unless noted otherwise in the plans. Match existing chamfer if the existing chamfer differs.
3. Use $2^{\prime \prime}$ clear cover on all reinforcing steel except as shown otherwise.
4. Request for construction joints or reinforcing steel splices at points other than those shown, must be submitted to the Engineer for prior approval. If additional splices are approved, no payment will be allowed for the added quantity of reinforcing steel.
5. The type of vibratory screed will be approved by the Engineer.
6. Snap ties, if used in the barrier curb formwork, will be corrosion resistant. The corrosion resistant ties will be inert in concrete and compatible with reinforcing steel.

REMOVAL OF CONCRETE BRIDGE APPROACH SLAB

1. The existing concrete approach and sleeper slabs adjacent to the structure will be completely removed by the Contractor.
2. The concrete and reinforcing steel from the removal will be disposed of by the Contractor at an approved site. An appropriate site will be as described in the Environmental Commitment notes in this set of plans.
3. The quantity provided for Remove Concrete Bridge Approach Slab is computed using the plan area for the sleeper slab and the plan area for the approach slab determined separately.
4. All labor, tools, equipment, and any incidentals necessary for removal and disposal of the existing approach slabs, polyme modified growth joints, and Approach Slab.

DESIGN MIX OF CONCRETE

1. Class A45 Concrete will be used for the contract items Concrete Approach Slab for Bridge and Concrete Approach Sleeper Slab for Bridge.

APPROACH SLABS

1. Excavation for placement of new approach slabs and sleeper slabs will be done with minimal disturbance to the underlying material.
2. Prior to the placement of the approach and sleeper slabs, the existing Mechanical Stabilized Earth and Backfill material will be compacted using at least four complete passes of a smooth face vibratory roller or vibratory plate compactor. Base course will be placed as required to fill any low spots and to achieve the elevation existing and fill material will be thoroughly watered prior to and during compaction. Base course will be in accordance with Section 882 of the Construction Specifications. MSE should be undisturbed.

ESTIMATE OF STRUCTURE QUANTITIES AND NOTES FOR
245' - 5 1/4" CONT. COMP. GIRDER BRIDGE
STR. NO. 58-101-321
MAY 2022

DESIGNED BY GACICCB	CK. DES. BY MAB	DRAA	

APPROACH SLABS (CONTINUED)

3. The top of approach slab elevations will be subject to the approval of the Engineer. Care will be taken to provide a smooth transition from the bridge deck elevations to the new pavement elevations established in the field so as to prevent any dips or bumps in the areas of the bridge ends or ends of the new approach slabs. The maximum rate of grade transition through the approach slab will be $1 / 8$ inch per 10 feet.
4. Sleeper slab riser will be cast with or later than the approach slab. Care will be taken to ensure the correct grade is maintained across the joint.
5. The use of a vibratory screed will be required during placement of Class A45 Concrete for the approach slabs. Concrete placement in front of the screed will be kept parallel to the screed.
6. The concrete in the approach slab will be tined perpendicular to the centerline of the roadway.
7. The new approach slabs and sleeper slabs will have a surface finish as specified in Section 460.3 L .4 of the Construction Specifications.
8. The concrete approach slabs will be cured in accordance with Section 460.3 M of the Construction Specifications. The minimum 7-day cure tim requirement will be waived. The approach slabs will be cured until minimum compressive strength of $4,000 \mathrm{psi}$ is reached.
9. Concrete Approach Sleeper Slab for Bridge will be paid for at the contrac unit price per square yard. This payment will be full compensation fo excavation; furnishing, hauling, and placing all materials including concrete, concrete anchors, and reinforcing steel; for disposal of all any incidentals necessary to complete this item of work
10. Concrete Approach Slab for Bridge will be paid for at the contract unit price per square yard. This payment will be full compensation fo excavation; furnishing, hauling, and placing all materials including concrete, elastic joint sealer, and reinforcing steel; for disposal of al
excavated material and surplus materials; labor; tools; equipment; and excavated material and surplus materials; labor; tools;
any incidentals necessary to complete this item of work.
11. Any base course and compaction required to fill any low spots or voids will be paid for at the contract unit price per cubic per yard for Granula Bridge End Backfill. This payment will be full compensation for furnishing and placing all materials including disposal of all surplus materials; labor; tools; equipment; and any incidentals necessary to complete this item of work.

CELLULAR GROUT

1. Forms will be constructed in the area where there is a void under abutment. The forms will be constructed to withstand the pressure of the
 under the abutment.
2. The grout will be cellular grout (grout with pre-generated foam) with a minimum 28 -day compressive trigth of 100 pounds per with a minimum 28-day compressive strength of 100 pounds per square
inch. If water is not present within then a low density grout with a minimum of 30 pounds per cubic foot wet density may be used. When it is not possible keep water out during grouting, a high density grout with a minimum of 70 pounds per cubic foot will be used which may include approved sand. The foaming agent used will meet requirements of ASTM C869 when tested in accordance with ASTM C796.
3. Both cellular grout mix designs will be submitted to the SDDOT Concrete Engineer for approval prior to use. The mix design submittal will include the base cement slurry mix per cubic yard density (pounds per cubic foot).
4. The Contactor will install a bypass valve adjacent to the location where the pressure grouting hose is attached for obtaining samples to be checked for wet density. The wet density of the cellular grout will be checked by the Contractor to verify the proper minimum wet minimum once every two hours during production. The SDDOT will document the results of the density checks.
5. Cellular grout will be wasted until the cellular grout meets the minimum wet density required; however, if 0.5 cubic yards or more of base cement slurry is wasted trying to meet density requirements, then that quantity will not be included for payment.
6. Port holes used for grout pumping operation will be plugged until the grout has set.
7. The quantity of cellular grout is estimated based on a void 6 inches in depth and full width of the abutment.
8. The quantity of base cement slurry ordered will be approved by the Engineer. The quantity of base cement slurry needed will be calculated to the nearest tenth of a cubic yard using the approved mix design, expansion factor of the foaming agent, and estimated amount of cellular grout. The quantity for payment to the nearest tenth of a cubic yard of Cellular Grout is a calculated quantity based on the amount of base cement slurry used on the project to the and approved mix design.
9. Payment will be full compensation for labor, equipment, tools, materials, forms, excavation, and all other items of work required in furnishing, forming, placing, curing, and incidentals necessary to satisfactorily complete the work will be included in the contract unit price per cubic yard for cellular grout.

BRIDGE BERM REPAIR

1. The bridge berms shall be rebuilt and reshaped as shown in plans
2. The cost of the berm reconstruction and reshaping shall be incidental to the contract lump sum price for "Bridge Berm Repair". This payment shall be full compensation for furnishing all materials, labor ools, and equipment necessary or incidental to the reconstruction and reshaping of the bridge berm.
3. The cost for the placement of cellular grout under the bridge shall be included with those respective contract items and are not part of the "Bridge Berm Repair" required for the berm reshaping.

BRIDGE DECK GRINDING

1. Perform Bridge Deck Grinding in accordance with Section 491 of the Construction Specifications.
2. The Contractor will have the option of grinding the entire deck surface during phase one. Any additional costs incurred for grinding will be at no additional cost to the Department

TWO COAT BRIDGE DECK POLYMER CHIP SEAL

The polymer will conform to Type I per the Department's Approved Products List for Bridge Deck Polymer Chip Seal.

TWO COAT BRIDGE DECK POLYMER CHIP SEAL (CONTINUED) CONCRETE PATCHING MATERIAL, BRIDGE DECK

1. In lieu of the 48 -hour wet cure, the contractor may use a wax-based curing compound after 4 hours of wet cure. The wax-based curing compound will be white pigmented and will be applied to the patch until the entire surface is white. After the 48 -hour cure period, the curing compound will be completely sand blasted off and the surface of the patch will be allowed to air dry for a minimum of 48 hours befor application of the polymer chip seal.
2. A thicker layer of the Two Coat Bridge Deck Polymer Chip Seal will not be used in place of Concrete Patching Material, Bridge Deck. Joint Nosing Material from the Department's Approved Products List may be used for Concrete Patching Material, Bridge Deck provided it is compatible with the polymer used for the chip seal and is approved by the manufacturer's representative. Joint Nosing Material will be fully cured before application of the chip seal. If Joint Nosing Material is substituted for Concrete Patching Material it will be paid for at the contract unit price per cubic foot for Concrete Patching Material, Bridge Deck.

AS-BUILT ELEVATION SURVEY

The Contractor will be responsible for producing an as-built elevation survey soon after construction is complete and before the bridge is completey opened to traffic The Contractor will be responsible for recording the as-buit elevations at the locations shown by the table of as-built elevations shown in the plans. The completed table will be given to the Engineer who will forward a copy to the Bridge Maintenance Engineer in the Office of Bridge Design and the Senior Region Bridge Engineer. The elevations will be based on the verifying the control points provided in the plans. All costs associated with obtaining the elevations at the locations shown in the table and for the benchmark shown in the plans, including all equipment, labor and any incidentals required will be incidental to the contract lump sum price for Bridge Elevation Survey.

SLOPE PROTECTION (RAILROAD COORDINATION)

1. During slope protection construction the contractor shall not interfere with the operating railroad train movements. Construction activity must not take place within 25 of the centerline track. When train movements are occurring through the construction site construction equipment shall be removed from this zone prior to arrival of any train. See special provisions for working on railroad company property.
2. See special provisions for railroad insurance requirements

GENERAL NOTES

1. The Membrane Sealant shall be on the approved product list for Membrane Sealant Expansion Joints 2. The manufacturer shall supppy the membrane seealant in packaging that trecempresses the membrane
 sealant exceeas the
2. The membrane sealant shall provide a water tight seal throughout a joint movement range of $+25 \%$
$($ minimum) from the specified joint opening dimension.
3. The membrane sealant shall be supplied in pieces a minimum of 5 feet in length. The foam sealant shall be
4. The bonding adhesive used to attach the membrane sealant to the adjacent concrete shall be approved by
5. Adhesive used to join adjacent pieces of the membrane sealant shall be as recommended by the
6. If styrfofoam filler materiai is used in the construction, it shall be closed cell and water-tight as approved by the
7. The mini
. . 9. Atechnical representativiv of the membrane sealant manufacturer shall be prosent at the job Site during Areparation and iechnicar representative shall be knowledgeable in the oorrect procedures for the ioint material to to ensure the Contractor installs the joint to the
8. Surfaces that will be in contact with the membrane sealant shall be thoroughly cleaned by arrasive blasting
to remove al litiance and contaminants such as oil. curing compounds. elt., from the sufface. At lo remove all laitance and contaminants (such as oil, curing compounds, etc.) from the surface. Ata
minimum, two passes of abrasive blasting with the nozzle held at an angle to within 1 to 2 inches of the minimum, two passes of a brasivive blasting with the nozzle held dat an angle tio within 1 too inches of the
surface ivill be required. Cleaning of the surfaces with solvents, wire brushing, or grinding shall not be permitted.
9. Atter abrasive blasting, but immediately privi ro membrane joint installation, the entive joint contact surface Shal be air basted. The air rompressor used for joint lleaning shall be equipped with trap devices copable

10. Individual spliced sections shall be installed as per the manufacturer's recommendations. The membrane to joint installation tor for his reveveen.
11. Traffic shall not be allowed on the joint until the bonding achesive has had time to cure, as recommended by

12. The Membrane Sealant Expansion Joint will be measured in feet to the nearest one-tenth foot, complete in lace. Measurement will be made of the overall horizontal le ength. The Membrane Sealant Expansion Jo
will be paid tor at the contraca t unit price per foot complete in place. Payment tor this item shall be full necessary to completete the work in accordance with the plans and the foreregoing specification

Table of Elevations - Approach Roadway									
Location	Elevation								
58 L		$58 M$		$58 C$		$58 N$		$58 R$	
$59 L$		$59 M$		$59 C$		$59 N$		$59 R$	
$60 L$		$60 M$		$60 C$		$60 N$		$60 R$	
$61 L$		$61 M$		$61 C$		$61 N$		$61 R$	
$62 L$		$62 M$		$62 C$		$62 N$		$62 R$	
$63 L$		$63 M$		$63 C$		$63 N$		$63 R$	
$64 L$		$64 M$		$64 C$		$64 N$		$64 R$	
$65 L$		$65 M$		$65 C$		$65 N$		$65 R$	
$66 L$		$66 M$		$66 C$		$66 N$		$66 R$	
$67 L$		$67 M$		$67 C$		$67 N$		$67 R$	
$68 L$		$68 M$		$68 C$		$68 N$		$68 R$	
$69 L$		$69 M$		$69 C$		$69 N$		$69 R$	
$70 L$		$70 M$		$70 C$		$70 N$		$70 R$	
$71 L$		$71 M$		$71 C$		$71 N$		$71 R$	
$72 L$		$72 M$		$72 C$		$72 N$		$72 R$	
$73 L$		$73 M$		$73 C$		$73 N$		$73 R$	
$74 L$		$74 M$		$74 C$		$74 N$		$74 R$	
$75 L$		$75 M$		$75 C$		$75 N$		$75 R$	
$76 L$		$76 M$		$76 C$		$76 N$		$76 R$	
$77 L$		$77 M$		$77 C$		$77 N$		$77 R$	
$78 L$		$78 M$		$78 C$		$78 N$		$78 R$	

Table of Elevations - Approach Slab Joints (See SEC. A - A) and Approach Slab									
Location	Elevation								
79L		79M		79C		79N		79R	
80L		80M		80 C		80N		80R	
81L		81M		81 C		81N		81R	
82L		82M		82 C		82N		82R	
83L		83M		83 C		83N		83R	
84L		84M		84 C		84N		84R	
		85M		85 C		85N		85R	
				86C		86N		86R	
						1N		$1 R$	
								$2 R$	

Table of Elevations - Bridge Deck									
Location	Elevation								
$85 L$									
$86 L$		$86 M$							
$1 L$		$1 M$		$1 C$					
$2 L$		$2 M$		$2 C$		$2 N$			
$3 L$		$3 M$		$3 C$		$3 N$		$3 R$	
$4 L$		$4 M$		$4 C$		$4 N$		$4 R$	

AS-BUILT SURVEY (B)
FOR
245' - 5 1/4" CONT. COMP. GIRDER BRIDGE 40'-0" ROADWAY OVER RAILROAD STR. NO. 58-101-321
35° SKEW R.H.F. C. $14-\mathrm{T} 115 \mathrm{~N}-\mathrm{R} 64 \mathrm{~W}$ NH-P 0013(146)

SPINK COUNTY
S. D. DEPT. OF TRANSPORTATION

MAY 2022
(11) OF (19)

$\substack{\text { DESIIGNED BY } \\ \text { GACICCB }}$	CK. DES. BY MAB	GRAFTED BY GAC	
BRIDGE ENGINEER			

Table of Elevations - Bridge Deck

Location	Elevation								
4L		4M		4 C		4N		4R	
5L		5M		5 C		5N		5R	
6 L		6M		6 C		6N		$6 R$	
7L		7M		7 C		7N		$7 R$	
8L		8M		8 C		8N		8R	
9 L		9M		9 C		9N		9R	
10L		10M		10C		10N		10R	
11L		11M		11C		11N		11R	
12L		12M		12C		12N		12R	
13L		13M		13 C		13N		$13 R$	
14L		14M		14 C		14N		14R	
15L		15M		15 C		15N		15R	
16L		16M		16C		16N		16R	
17L		17M		17 C		17N		17R	
18L		18M		18 C		18N		18R	
19L		19M		19C		19N		19R	
202		20M		20C		20N		20R	
21L		21M		21 C		21N		21R	
$22 L$		22M		22 C		22N		22R	
$23 L$		23M		23 C		23N		23R	
24L		24M		24 C		24N		24R	
25L		25M		25 C		25N		25R	
26 L		26M		26 C		26N		26R	

AS-BUILT SURVEY (C)
FOR
245' - 5 1/4" CONT. COMP. GIRDER BRIDGE

40'-0" ROADWAY OVER RAILROAD STR. NO. 58-101-321
S. D. DEPT. OF TRANSPORTATION

MAY 2022

35° SKEWRHF 14-T115 R.R4.F 14-T115N-R64W
NH-P 0013(146)

ATION
(12) $\mathrm{OF}(19$

Table of Elevations - Bridge Deck									
Location	Elevation								
$26 L$		$26 M$		$26 C$		$26 N$		$26 R$	
$27 L$		$27 M$		$27 C$		$27 N$		$27 R$	
		$28 M$		28 C		$28 N$		$28 R$	
				$29 C$		$29 N$		$29 R$	
						$30 N$		$30 R$	
								$31 R$	

Table of Elevations - Approach Slab Joints (See SEC. B - B) and Approach Slab

Location	Elevation								
$28 L$									
$29 L$		$29 M$							
$30 L$		$30 M$		$30 C$					
$31 L$		$31 M$		$31 C$		$31 N$			
$32 L$		$32 M$		$32 C$		$32 N$		$32 R$	
$33 L$		$33 M$		$33 C$		$33 N$		$33 R$	
$34 L$		$34 M$		$34 C$		$34 N$		$34 R$	
$35 L$		$35 M$		$35 C$		$35 N$		$35 R$	
$36 L$		$36 M$		$36 C$		$36 N$		$36 R$	

Table of Elevations - Approach Roadway									
Location	Elevation								
37 L		37M		37 C		37N		37 R	
38L		38M		38 C		38N		$38 R$	
39L		39M		39 C		39N		39R	
40L		40M		40 C		40N		40R	
41L		41M		41 C		41N		41R	
42L		42M		42C		42N		42R	
43L		43M		43 C		43N		$43 R$	
44L		44M		44C		44N		$44 R$	
45L		45M		45 C		45N		45R	
46L		46M		46 C		46N		$46 R$	
47L		47M		47 C		47N		47R	
48L		48M		48 C		48N		48 R	
49L		49M		49 C		49N		49R	
50L		50M		50 C		50N		50R	
51L		51M		51 C		51N		51R	
52L		52M		53C		52N		52R	
53L		53M		54 C		53N		53R	
54L		54M		55 C		54N		54R	
55L		55M		56C		55N		55R	
56L		56M		$57 C$		56N		56R	
57L		57M		58 C		57N		57R	

