

1	«KLJ	STATE OF	PROLECT		SHEET	TOTAL SHEETS
		SOUTH DAKOTA	P 1806(23)	(23)186 E		B56
1.5	Plotting Date:		3/7/2024	Revised 3/8/2	24 JLB	

INDEX OF SHEETS

81	General Layout with Index
82-B7	Estimate with General Notes and Tables
88-B11	Table of Pipe Quantities
812	Typical Grading Section
813	Fault Heave Repair Typical
14-B16	Horizontal Alignment Data
17	Control Data
18	Legend
19-B25	Plan Sheets
26	Shoulder Widening Layout
27-B28	Guardrail Layouts
29-B36	Special Detail Sheets
37-B56	Standard Plates

SECTION B ESTIMATE OF QUANTITIES

BID ITEM NUMBER	ITEM	QUANTITY	UNIT
009E0010	Mobilization	Lump Sum	LS
110E0500	Remove Pipe Culvert	266	Ft
110E0510	Remove Pipe End Section	79	Each
110E0590	Remove Cattle Pass	16	Ft
110E0595	Remove Cattle Pass End Section	2	Each
110E0600	Remove Fence	476	Ft
110E0700	Remove 3 Cable Guardrail	640	Ft
110E0730	Remove Beam Guardrail	92.0	Ft
110E7500	Remove Pipe for Reset	176	Ft
110E7510	Remove Pipe End Section for Reset	12	Each
120E0010	Unclassified Excavation	38,283	CuYd
120E0600	Contractor Furnished Borrow Excavation	24,042	CuYd
120E2000	Undercutting	4,778	CuYd
120E4100	Reprofiling Ditch	22.9	Sta
120E6100	Water for Embankment	432.3	MGal
270E0112	Salvage Granular Material	991.5	Ton
430E0700	Precast Concrete Headwall for Drain	12	Each
450E0143	24" RCP Class 3, Furnish	184	Ft
450E0150	24" RCP, Install	184	Ft
450E2008	18" RCP Flared End, Furnish	29	Each
450E2009	18" RCP Flared End, Install	29	Each
450E2016	24" RCP Flared End, Furnish	14	Each
450E2017	24" RCP Flared End, Install	14	Each
450E2024	30" RCP Flared End, Furnish	2	Each
450E2025	30" RCP Flared End, Install	2	Each
450E4768	24" CMP 14 Gauge, Furnish	86	Ft
450E4770	24" CMP, Install	86	Ft
450E4778	30" CMP 14 Gauge, Furnish	50	Ft
450E4780	30" CMP, Install	50	Ft
450E5020	30" CMP Elbow, Furnish	2	Each
450E5021	30" CMP Elbow, Install	2	Each
450E5211	18" CMP Flared End, Furnish	8	Each
450E5212	18" CMP Flared End, Install	8	Each
450E5215	24" CMP Flared End, Furnish	12	Each
450E5216	24" CMP Flared End, Install	12	Each
450E5314	30" CMP Sloped End, Furnish	1	Each
450E5315	30" CMP Sloped End, Install	1	Each
450E5826	54" CMP Arch Flared End, Furnish	16	Each
450E5827	54" CMP Arch Flared End, Install	16	Each
450E8900	Cleanout Pipe Culvert	32	Each
450E8910	Cleanout for Culvert Treatment	10	Each
450E9000	Reset Pipe	176	Ft
450E9001	Reset Pipe End Section	12	Each

* - Denotes Non-Participating

450E951818" Cured in Place Pipe650Ft450E952424" Cured in Place Pipe213Ft450E952836" Cured in Place Pipe82Ft462E0250Cellular Grout20.6CuYd620E0020Type 2 Right-of-Way Fence80Ft620E0030Type 3 Right-of-Way Fence70Ft620E0520Type 2 Temporary Fence150Ft620E0530Type 3 Temporary Fence176Ft620E10303 Post Panel4Each629E0110High Tension 4 Cable Guardrail566Ft630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each630E2035W Beam Guardrail Special Anchor Assembly1Each630E20344" Perforated PVC Drain Pipe with Sleeve360Ft680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5CuYd834E0410Tupe B Drainaga Exbrig160St	BID ITEM NUMBER	ITEM	QUANTITY	UNIT
450E952836" Cured in Place Pipe82Ft462E0250Cellular Grout20.6CuYd620E0020Type 2 Right-of-Way Fence80Ft620E0030Type 3 Right-of-Way Fence70Ft620E0520Type 2 Temporary Fence150Ft620E0530Type 3 Temporary Fence176Ft620E0530Type 3 Temporary Fence176Ft620E05303 Post Panel4Each629E0110High Tension 4 Cable Guardrail566Ft630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5Curved	450E9518	18" Cured in Place Pipe	650	Ft
462E0250Cellular Grout20.6CuYd462E0250Cellular Grout20.6CuYd620E0020Type 2 Right-of-Way Fence80Ft620E0030Type 3 Right-of-Way Fence70Ft620E0520Type 2 Temporary Fence150Ft620E0530Type 3 Temporary Fence176Ft620E10303 Post Panel4Each629E0110High Tension 4 Cable Guardrail566Ft629E0290High Tension Cable Guardrail Anchor Assembly4Each630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E2200Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5Curvd	450E9524	24" Cured in Place Pipe	213	Ft
620E0020Type 2 Right-of-Way Fence80Ft620E0030Type 3 Right-of-Way Fence70Ft620E0520Type 2 Temporary Fence150Ft620E0530Type 3 Temporary Fence176Ft620E10303 Post Panel4Each629E0110High Tension 4 Cable Guardrail566Ft629E0290High Tension Cable Guardrail Anchor Assembly4Each630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5Curvd	450E9528	36" Cured in Place Pipe	82	Ft
620E0030Type 3 Right-of-Way Fence70Ft620E0030Type 3 Right-of-Way Fence150Ft620E0520Type 2 Temporary Fence150Ft620E0530Type 3 Temporary Fence176Ft620E10303 Post Panel4Each629E0110High Tension 4 Cable Guardrail566Ft630E1010Straight Class A W Beam Guardrail Anchor Assembly4Each630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5CurVd	462E0250	Cellular Grout	20.6	CuYd
620E0520Type 2 Temporary Fence150Ft620E0530Type 3 Temporary Fence176Ft620E0530Type 3 Temporary Fence176Ft620E10303 Post Panel4Each629E0110High Tension 4 Cable Guardrail566Ft629E0290High Tension Cable Guardrail Anchor Assembly4Each630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5Curvd	620E0020	Type 2 Right-of-Way Fence	80	Ft
620E0530Type 3 Temporary Fence176Ft620E10303 Post Panel4Each629E0100High Tension 4 Cable Guardrail566Ft629E0290High Tension Cable Guardrail Anchor Assembly4Each630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5Curvd	620E0030	Type 3 Right-of-Way Fence	70	Ft
620E10303 Post Panel4620E10303 Post Panel4629E0110High Tension 4 Cable Guardrail566629E0290High Tension Cable Guardrail Anchor Assembly4630E1010Straight Class A W Beam Guardrail with Wood Posts62.5630E1025Curved Class A W Beam Guardrail with CRT Posts37.5630E2035W Beam Guardrail Special Anchor Assembly1632E2510Type 2 Object Marker Back to Back158680E02044" Perforated PVC Drain Pipe with Sleeve360680E02244" PVC Outlet Pipe160680E2500Porous Backfill171.0700E0210Class B Riprap99.8720E1010PVC Coated Bank and Channel Protection Gabion10.5	620E0520	Type 2 Temporary Fence	150	Ft
629E0110High Tension 4 Cable Guardrail566Ft629E0290High Tension Cable Guardrail Anchor Assembly4Each630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E02244" PVC Outlet Pipe160Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5CurVd	620E0530	Type 3 Temporary Fence	176	Ft
629E0290High Tension Cable Guardrail Anchor Assembly4630E1010Straight Class A W Beam Guardrail with Wood Posts62.5630E1025Curved Class A W Beam Guardrail with CRT Posts37.5630E2035W Beam Guardrail Special Anchor Assembly1632E2510Type 2 Object Marker Back to Back158680E02044" Perforated PVC Drain Pipe with Sleeve360680E02244" PVC Outlet Pipe160Ft680E2500Porous Backfill700E0210Class B Riprap99.8720E1010PVC Coated Bank and Channel Protection Gabion10.5	620E1030	3 Post Panel	4	Each
630E1010Straight Class A W Beam Guardrail with Wood Posts62.5Ft630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E02244" PVC Outlet Pipe160Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5Curved	629E0110	High Tension 4 Cable Guardrail	566	Ft
630E1025Curved Class A W Beam Guardrail with CRT Posts37.5Ft630E2035W Beam Guardrail Special Anchor Assembly1Each632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E02244" PVC Outlet Pipe160Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5Curved	629E0290	High Tension Cable Guardrail Anchor Assembly	4	Each
630E2035W Beam Guardrail Special Anchor Assembly1632E2510Type 2 Object Marker Back to Back158680E02044" Perforated PVC Drain Pipe with Sleeve360680E02244" PVC Outlet Pipe160680E2500Porous Backfill171.0700E0210Class B Riprap99.8720E1010PVC Coated Bank and Channel Protection Gabion10.5	630E1010	Straight Class A W Beam Guardrail with Wood Posts	62.5	Ft
632E2510Type 2 Object Marker Back to Back158Each680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E02244" PVC Outlet Pipe160Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5CuYd	630E1025	Curved Class A W Beam Guardrail with CRT Posts	37.5	Ft
680E02044" Perforated PVC Drain Pipe with Sleeve360Ft680E02244" PVC Outlet Pipe160Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5CuYd	630E2035	W Beam Guardrail Special Anchor Assembly	1	Each
680E02244" PVC Outlet Pipe160Ft680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5CuYd	632E2510	Type 2 Object Marker Back to Back	158	Each
680E2500Porous Backfill171.0Ton700E0210Class B Riprap99.8Ton720E1010PVC Coated Bank and Channel Protection Gabion10.5CuYd	680E0204	4" Perforated PVC Drain Pipe with Sleeve	360	Ft
700E0210 Class B Riprap 99.8 Ton 720E1010 PVC Coated Bank and Channel Protection Gabion 10.5 CuYd	680E0224	4" PVC Outlet Pipe	160	Ft
720E1010 PVC Coated Bank and Channel Protection Gabion 10.5 CuYd	680E2500	Porous Backfill	171.0	Ton
	700E0210	Class B Riprap	99.8	Ton
831E0110 Type B Drainage Eabric 160 SaVd	720E1010	PVC Coated Bank and Channel Protection Gabion	10.5	CuYd
100 SqTu	831E0110	Type B Drainage Fabric	160	SqYd
831E0400 Impermeable Plastic Membrane 68 SqYd	831E0400	Impermeable Plastic Membrane	68	SqYd
900E2030 Miscellaneous Work 11 Site	900E2030	Miscellaneous Work	11	Site

* - Denotes Non-Participating

GRADING OPERATIONS

Water for Embankment is estimated at the rate of 15 gallons of water per cubic yard of Embankment minus Waste. The estimated quantity of Water for Embankment is 432.3 MGal. All costs associated will be incidental to the contract unit price per MGal of "Water for Embankment".

The estimated cubic yards of excavation and/or embankment required to construct outlet ditches, ditch blocks, and approaches are included in the earthwork balance notes on the profile sheets.

TABLE OF EXCAVATION QUANTITIES BY BALANCES

Lo	ocation	Excavation	* Undercut	* Contractor Furnished Borrow	Exc
MRM to	MRM	(CuYd)	(CuYd)	Exc. (CuYd)	(0
Grading at Pipe	Ends	-	-	80	
192.00+0.256	192.00+0.284	889	739	1363	
193.00+0.326	193.00+0.414	2398	2323	3688	4
193.00+0.523	193.00+0.588	1866	1716	2866	
Inslope Modifica	ation (Sections 6-9)	1416	-	16045	
	Totals:	6569	4778	24042	1

* The quantities for these items are in the Estimate of Quantities under their respective contract items.

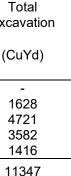
Special ditch grades and other sections of the roadway different than the typical sections will be constructed to the limits shown on the cross sections. If significant changes to the cross sections are necessary during construction, the Engineer will contact the Designer for the proposed change.

Generally, all shallow inlet and outlet ditches as noted on the plan sheets will be cut with a 10-foot wide bottom with 5:1 backslopes. However, the Engineer may direct the Contractor to adjust the ditch width for proper alignment with the drainage structure.

UTILITIES

The Contractor will contact the involved utility companies through South Dakota One Call (1-800-781-7474) prior to starting work. It will be the responsibility of the Contractor to coordinate work with the utility owners to avoid damage to existing facilities.

Utilities are not planned to be affected on this project. If utilities are identified near the improvement area through the SD One Call Process as required by South Dakota Codified Law 49-7A and Administrative Rule Article 20:25, the Contractor will contact the Engineer to determine modifications that will be necessary to avoid utility impacts.


SALVAGE GRANULAR MATERIAL

In the heave repair areas, the Contractor will be required to salvage enough existing granular base material for a 4" lift of temporary surfacing, prior to asphalt concrete surfacing for the project. The 4" lifts are estimated to require 991.5 Tons of salvaged material. Cost associated with salvaging and stockpiling the material for use as temporary surfacing is incidental to the contract unit price per ton for "Salvage Granular Material".

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B2	B54

Revised 4/26/24 EJW

SHRINKAGE FACTOR: Embankment +20%

TABLE OF UNCLASSIFIED EXCAVATION

		(CuYd)
Excavation		6569
Undercut		4778
Topsoil		26936
	Total	38283

PROCEDURES FOR DETERMINING UNCLASSIFIED EXCAVATION QUANTITY

When plan quantities are used for payment, the Unclassified Excavation quantity will be used for final payment and the plans quantity of Topsoil and salvaged surfacing items listed in the Table of Unclassified Excavation will not be adjusted according to field measurements.

The Excavation quantities from individual balances and the table above have been reduced by the volume of in place concrete pavement and asphalt pavement that will be removed.

UNDERCUTTING

The undercut depth for the Fault-Heave Repair areas will be 3 feet.

The plan shown quantity will be the basis of payment. However, if there are additional areas of undercut other than what is shown in the plans, the Engineer will direct removal of these areas and the additional areas will be measured according to the Engineer.

TABLE OF UNDERCUTTING

MRM to	MRM	Quantity
192.00+0.256	192.00+0.284	739
193.00+0.326	193.00+0.414	2323
193.00+0.523	193.00+0.588	1716
	Total	4778

CONTRACTOR FURNISHED BORROW EXCAVATION

The Contractor will provide a suitable site for Contractor furnished borrow excavation material. The Contractor is responsible for obtaining all required permits and clearances for the borrow site. The borrow material will be approved by the Engineer. The plans quantity for "Contractor Furnished Borrow Excavation" as shown in the Estimate of Quantities will be the basis of payment for this item.

Restoration of the Contractor furnished borrow excavation site will be the responsibility of the Contractor.

TABLE OF CONTRACTOR FURNISHED BORROW

Location		
MRM to	MRM	Quantity
		(CuYd)
Grading at Pipe End	ls	80
192.00+0.256	192.00+0.284	1363
193.00+0.326	193.00+0.414	3688
193.00+0.523	193.00+0.588	2866
Inslope Modification	(Sections 6-9)	16045
	Total:	24042

MISCELLANEOUS WORK

The Contractor will perform miscellaneous work, as detailed in the table below. Riprap will be removed to 12" below the ditch gradeline. Riprap removed from rock check dams will be hauled and stockpiled at the SDDOT Pierre Area Office, as directed by the Engineer. The resulting hole will be filled to within 4" of the gradeline with borrow material, with the top 4" being filled with Contractor supplied topsoil. Cost to remove the riprap, supply and place borrow material, supply and place Contractor supplied topsoil, and final grading, prior to placement of the erosion control appurtenances, is incidental to the contract unit price per Site for Miscellaneous Work.

The riprap at inlet of the box culvert at 24+80-L will be removed, and stockpiled. The inlet channel will then be re-shaped and the riprap replaced in the inlet channel at a depth of no less than 24". The reshaped channel will provide a consistent profile from the ditch-line to the RCBC. Prior to replacement of the riprap, Type B Drainage Fabric will be placed both under and on the vertical cut section where the riprap is replaced. Cost for removing, stockpiling, and placing riprap, supplying and placing Type B Drainage Fabric, and fine grading of the ditch to ensure drainage is maintained, is incidental to the contract unit price per Site for Miscellaneous Work.

Location	Work to be performed
1+86 L	Remove Rock Check Dam
4+00 L	Remove Rock Check Dam
6+41 L	Remove Rock Check Dam
8+90 L	Remove Rock Check Dam
12+00 L	Remove Rock Check Dam
14+71 L	Remove Rock Check Dam
17+89 L	Remove Rock Check Dam
20+84 L	Remove Rock Check Dam
22+57 L	Remove Rock Check Dam
23+82 L	Remove Rock Check Dam
24+75 L	Remove & Replace Riprap

REPROFILING DITCH (Station 1+86-L to 24+75-L)

The Contractor will reprofile the ditch as directed by the Engineer. The ditches will be excavated to obtain proper drainage. The excavated material may be used as fill material as approved by the Engineer.

All costs associated with clearing and reshaping of the existing ditch, labor. excavation, placing material, equipment, and incidentals will be paid for at the contract unit price per station for "Reprofiling Ditch". If embankment material is required, it will be paid for at the contract unit price cubic yard for Contractor Furnished Borrow.

FAULT-HEAVE REPAIR

The earthen subgrade will be undercut 3 feet below the earthen subgrade surface at the fault-heave areas specified in the table below. The undercut material or other suitable material, as directed by the Engineer, will then be replaced, and compacted to the density specified for the section being constructed. The undercut will utilize a 4:1 taper from the top of the subgrade to the bottom of the undercut.

MRM	to	
192.256±		
193.326±		
193.523±		

Density Method.

For embankment soil with an optimum moisture of 20% or greater, the Density Specification (Percent of Maximum Dry Density) will be 92% to 98% and the Moisture Specification (Percent of Optimum Moisture) will be -2% to +3%.

In addition to undercutting the road, fault traces were noted in the ditches. Shape ditches to correct the distortions caused by the fault traces and reestablish proper drainage.

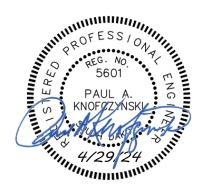
US CORPS OF ENGINEERS UTILITY LOCATION

follows:

Jason Taylor Jason.r.taylor@usace.army.mil (Office) 605-945-3416 (Cell) 605-280-1891

LeeJay Templeton leejay.j.templeton@usace.army.mil (Office) 605-945-3411

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B3	B54


Revised 4/26/24 EJW

MRM

192.284± 193.414± 193.588±

Compaction of the earth embankment will be governed by the Specified

The Contractor is required to contact and coordinate with the US Corps of Engineers USCOE) for locating existing phone line locations, a minimum of two weeks prior to any work starting for the undercutting of the fault-heave repairs. Fault-heave repair locations are located between MRM 192.00+0.256 to 193.00+0.588. Contact information for the USCOE is as

GENERAL UNDERDRAIN NOTES

The SDDOT Geotechnical Engineering Activity will be contacted a minimum of one week prior to pavement removal for assistance in locating the fault trace underdrains and outlet locations.

The 4-inch Perforated PVC Drainpipe will be PS 46 Solvent Weld PVC pipe conforming to ASTM F758 or SDR 35 Solvent Weld PVC Pipe conforming to ASTM D3034 with perforations in accordance with ASTM F758. The 4-inch PVC Outlet Pipe will be Schedule 40 PVC Pipe conforming to ASTM D1785 designated as PVC 1120, PVC 1220, or PVC 2120. Pipe sections will be connected using a PVC Solvent Cement conforming to ASTM D2564. The Drain Sleeve will conform to ASTM D6707. All labor, tools, equipment, and incidentals necessary for the installation of the PVC Pipe will be incidental to the contract unit price per foot for each pipe type.

Care must be taken to ensure that the drainage tubing is not damaged during construction.

The drain location and depth given are based on the best information available to the Geotechnical Engineering Activity. The actual field conditions may require that adjustments be made by the Project Engineer to provide for sufficient drainage. The Geotechnical Engineering Activity will be available for onsite assistance if necessary.

Outlet headwalls will be cleared of topsoil, straw, or other debris after seeding operations have been completed. The as-built headwall locations will be recorded and submitted to the Engineer. Each headwall location will be identified by GPS coordinates and Station and Offset. The headwall locations will be cataloged in the Pierre Area office for future reference in postconstruction maintenance.

FAULT TRACE UNDERDRAINS

After the surfacing section has been removed, reestablish the desired subgrade profile by removing excess heave material. Once the subgrade profile has been established, undercut 3 feet below the corrected subgrade surface. After excavating the subgrade material during undercut operations, an underdrain will be installed through the fault trace. It is anticipated that to provide positive drainage, the underdrain installation at MRM 192.27 may require adjusting the trench depth. Adjustment to the trench depth will be accomplished by backfilling the undercut area as needed prior to excavation of the underdrain trench and reducing the thickness of compacted soil backfill over 2 feet of porous backfill.

The underdrain will be installed in a trench 4 feet wide by 2 feet deep. The trench will be graded to maintain a minimum of .01ft/ft or 1% drop. The trench will be graded to drop from the east shoulder to the west ditch. Place 4-inch Perforated PVC Drainpipe with a filter fabric drain sleeve in the center of the trench bottom. Using SDR solvent weld PVC coupling, connect 4-inch PVC Outlet Pipe to the end of the Perforated PVC Drainpipe and place in the center of the trench. The outlet tubing will daylight at a headwall placed above the ditch bottom to provide positive drainage from the outlet and blend into the inslope. The depth of the trench may be adjusted to maintain the minimum grade needed to maintain positive drainage and proper placement of the headwalls. Backfill the trench containing the 4-inch Perforated PVC Drainpipe with Porous Backfill. The remainder of the trench from the edge of the subgrade top to the headwall will be backfilled with compacted soil.

Estimate of Quantities:

Item	Quantity	Unit
4-inch Perforated PVC Drainpipe with Filter	240	Ft
Fabric Drain Sleeve		
4-inch PVC Outlet Pipe	80	Ft
Porous Backfill	136	Ton
Headwalls (See Standard Plate No. 430.50)	4	Each

CUTOFF DRAIN

Cutoff drains will be installed in conjunction with fault heave repair and to prevent water from continuing to collect within a sag in the alignment. Cutoff drains at the fault-heave repairs will be installed after reconstruction of the subgrade and placement of the base course has been completed. Cutoff drains will be installed perpendicular to the centerline across both lanes at the following locations:

MRM 193.326, MRM 193.523, MRM 211.368, & MRM 211.487

The cutoff drain will be installed prior to placement of asphaltic surfacing. The cutoff drain will be installed in a trench 2 feet wide by 3 feet deep. The trench will be graded to maintain a minimum of 0.01ft/ft. or 1% drop from centerline to the ditches. Once the trench is excavated, place Impermeable Plastic Membrane on the trench bottom and against the downgrade side of the trench the entire width of the finished subgrade surface. The membrane will extend upward through the base course overlying the subgrade. The membrane will be folded, not cut, to fit against the bottom and the downgrade side of the trench. This may be done by rolling out the membrane perpendicular to centerline, folding the membrane into the trench, and cutting off the excess membrane from the top of the trench after backfilling. After the membrane is placed into the trench, place 4" Perforated PVC Drainpipe with a filter fabric drain sleeve on top of the membrane in the center of the trench bottom. Using a coupler, connect 4" PVC Outlet Pipe to both ends of the 4" Perforated PVC Drainpipe and place in the center of the unlined trench. The 4" PVC Outlet Pipe will daylight at a headwall placed above the ditch bottom to provide positive drainage from the outlet and blend into the inslope. The depth of the trench may be adjusted to maintain the minimum grade needed to maintain positive drainage and proper placement of the headwalls. Backfill the membrane lined trench containing the 4" Perforated PVC Drainpipe with porous backfill and 12" of Base Course. The remainder of the trench from the edge of the subgrade top to the headwall will be backfilled with compacted soil.

Estimate of Quantities:

Item	Quantity	Unit
Impermeable Plastic Membrane	68	SqYd
4-inch Perforated PVC Drainpipe with	120	Ft
Filter Fabric Drain Sleeve		
4-inch PVC Outlet Pipe	80	Ft
Porous Backfill	35	Ton
Headwalls (See Standard Plate No. 430.50)	8	Each

CORRUGATED METAL PIPE

Corrugated metal pipes will have $2\frac{3}{4}$ -inch x $\frac{1}{2}$ -inch corrugations for 42-inch and smaller round pipe and 48-inch and smaller arch pipe unless otherwise stated in the plans. Corrugated metal pipes will have 3-inch x 1-inch or 5-inch x 1-inch corrugations for 48-inch and larger round pipe and 54-inch and larger arch pipe unless otherwise stated in the plans.

Areas within the project have soils that are highly corrosive to steel. Corrugated metal pipe in these areas will be polymer coated 14 gauge steel as specified in the Table of Pipe Quantities. Any required connection bands, elbows, tees, crosses, wyes, reducers, and transitions will also be polymer coated. The connection bands will be 24 inches wide. All polymer coated corrugated metal pipe and components will be in conformance with AASHTO M245. Riveted pipe will not be allowed.

All damage to the polymer coating will be repaired in accordance with the manufacturer's recommendations prior to installation of the pipe.

All costs associated with the polymer coating including repair of polymer coating will be incidental to the corresponding CMP contract items.

Metal pipe end sections connected to polymer coated CMP will be aluminumcoated (Type 2) in accordance with AASHTO M36 as specified in the Table of Pipe Quantities. All costs associated for gauge, coating, and connections will be incidental to the corresponding CMP End Section contract items

GASKETED REINFORCED CONCRETE PIPE

The 24" reinforced concrete pipe installed at MRMs 191.00+0.614 (Sta d 0+00) and 192.00+0.313 (Sta d 36+98) will require flexible watertight gaskets as per 450.2 E.

TEMPORARY FENCE

The Contractor will verify the location of the temporary fence with the landowner prior to installation of the fence.

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B4	B54

Rev. 4-22-24 pak

MAINLINE CROSS PIPE REPLACEMENT

Pipe culverts at MRMs 191.614, 192.313, and 198.778 will be installed in accordance with the following notes and as shown on the Pipe Installation Detail.

This work will be completed prior to beginning cold milling on the project.

After the existing pipe has been removed, the new pipe culvert will be undercut to a minimum depth one 1 foot. The depth of undercut is an estimate and the actual depth necessary will be determined during construction. The Engineer will determine how much undercut will be done in accordance with Section 421 of the specifications but will not reduce the undercut to less that 1 foot in depth.

Select fill material for backfilling the undercut will conform to the gradation requirements of Base Course in Section 882. If groundwater is encountered during construction, the select fill material for backfilling the undercut area and Class B bedding will conform to the gradation requirements of Section 421.2 A. until backfill placement is above the groundwater level. The Engineer will process a CCO to provide for compensation to the Contractor for the added cost of the changed material. All other requirements of Section 421 will apply.

Pipe Culverts will be bedded in accordance with Section 450.3 F.2, Class B Bedding with the following exceptions. The excavated area will extend 2 feet from the outermost diameter on both sides of the pipe with the back of the excavated area being sloped 2:1 upward to the top of the roadway surface. Select fill material for Class B Bedding will conform to the gradation requirements of Base Course in section 882.

After the minimum testing requirements of M.S.T.R. Section 4.1F.3.a.1 (SDDOT Materials Manual) have been met, the minimum density testing requirements will be one test per zone. Each zone from the top of the pipe to the top of the subgrade will be 2 feet in depth. Moisture testing will remain as per M.S.T.R.

The remainder of the pipe culvert excavation will be backfilled with soils taken from the pipe removal excavation or other suitable material as approved by the Engineer. The Backfill with be benched into 2:1 excavation slope. Compaction of the backfill material will be governed by the Specified Density Method.

After the new pipe has been backfilled to the top of the subgrade, a 12" depth of Base Course and 5" (2-2.5" lifts) depth of asphalt concrete composite will be placed as a patch matching the existing asphalt concrete.

All costs to remove and dispose of asphalt concrete pavement, including full depth saw cutting of the asphalt concrete pavement, will be incidental to the contract until price per square yard to Remove Asphalt Concrete Pavement. All excavation necessary for Class B Bedding and the pipe installation will be incidental to the contract unit price per foot for the corresponding pipe installation contract items. The excavation of material for pipe culvert undercut will be paid for at the contract until price per cubic yard for Pipe Culvert Undercut.

The select fill material used for backfilling the pipe culvert undercut and the Class B bedding will be paid for at the contract unit price per ton for Base Course. The 3" layer of bedding material to form the cradle in the pipe foundation will be incidental to the corresponding pipe installation contract items. The cost for asphalt concrete composite installed over the pipe replacement will be paid for at the contract unit price per ton for Asphalt Concrete Composite.

REINFORCED CONCRETE PIPE

High sulfate levels will be encountered on this project. The type of cement will be either a type V or a type II with 20% to 25% Class F Modified Fly Ash substituted for cement in accordance with section 605. The Water/Cementitious material ratio will not exceed 0.45 as defined in section 460.3 C. The mix will be as per fabricator's design; however, minimum compressive strength will not be less than 4500 psi at 28 days. The pipe must be marked in an acceptable way to designate meeting the requirements for sulfate resistance.

TEMPORARY EXCAVATION

Temporary 1.5:1 excavation slope will be required at Station f227+54 Rt. The temporary slope will become unstable over the long-term. However, the slope should remain globally stable over the short-term during construction if measures are taken to divert runoff away from the slope and construction activities are sequenced to minimize the amount of time the temporary slopes are left exposed and unsupported. Regular monitoring of the temporary slope is required during construction. If the temporary slope becomes unstable, excavation will cease, and the slope will be evaluated by the Engineer. Reconstructed embankment will be benched into the temporary excavation slope in accordance with Section 120.3.B.2 of the Specifications.

TABLE OF PVC COATED BANK AND CHANNEL **PROTECTION GABIONS AND DRAINAGE FABRIC**

		PVC Coated Bank and Channel Protection Gabion	Type B Drainage Fabric
MRM	L/R	(CuYd)	(SqYd)
186.47+0.249	L	6.0	19
207.00+0.904	L	4.5	15
	Totals:	10.5	34

TABLE OF RIPRAP AND DRAINAGE FABRIC

		Class B Riprap	Type B Drainage Fabric
Station	L/R	(Ton)	(SqYd)
7+88	L	51.9	65
15+90	L	47.9	61
Section I	3 Total	99.8	126
25+93 (See Section E)	R		

CELLULAR GROUT

The Contractor will submit a proposed grouting procedure to the Engineer at least two weeks prior to beginning this work.

Bulkheads will be constructed at each end of the pipe. Each bulkhead will be constructed to withstand the pressure of the grouting operation. The bulkhead will extend from the end of the existing pipe inward a minimum depth of 18 inches and will be free from leaks.

Pressure grouting will be done to ensure all the voids are filled including all breaks or holes in and around the existing pipe.

The grout will be a cellular grout (grout with pre-generated foam) with a minimum 28-day compressive strength of 100 pounds per square inch. If water is not present within the pipe a low-density grout with a minimum of 30 pounds per cubic foot wet density may be used. When it is not possible to dewater the existing pipe, a high-density grout with a minimum of 70 pounds per cubic foot will be used which may include approved sand. The foaming agent used will meet the requirements of ASTM C869 when tested in accordance with ASTM C796.

Revised 4/26/24 EJW

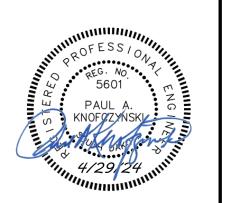
Both of the cellular grout mix designs will be submitted to the SDDOT Concrete Engineer for approval prior to use. The mix design submittal will include the base cement slurry mix per cubic yard, expansion factor from the foaming agent, and the cellular grout wet density (pounds per cubic foot).

The Contractor will install a bypass valve adjacent to the location where the pressure grouting hose is attached for obtaining samples to be checked for wet density. The wet density of the cellular grout will be checked by the

Contractor to verify the proper minimum wet density before the cellular grout filling operations begin and at a minimum once every two hours during production. The SDDOT will document the results of the density checks.

included for payment.

If grout holes are utilized, cylindrical wooden plugs or other approved plugs will be inserted to plug holes until the grout has set. After the plugs are removed the holes will be filled with concrete.


The quantity of cellular grout was estimated based on volume of the existing pipe and voids outside the existing pipe.

The quantity of base cement slurry ordered will be approved by the Engineer. The quantity of base cement slurry needed will be calculated to the nearest tenth of a cubic yard using the approved mix design, expansion factor of the foaming agent, and estimated amount of cellular grout. The quantity for payment to the nearest tenth of a cubic yard of "Cellular Grout" is a calculated quantity based on the amount of base cement slurry used on the project to the nearest tenth of a cubic yard, expansion factor of the foaming agent, and approved mix design.

All costs for furnishing and installing the cellular grout including bulkhead construction, inlet bevel construction, and incidentals necessary to satisfactorily complete the work will be included in the contract unit price per cubic yard for "Cellular Grout".

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B5	B54

Cellular grout will be wasted until the cellular grout meets the minimum wet density required; however, if 0.5 cubic yards or more of base cement slurry is wasted trying to meet density requirements, then that quantity will not be

TABLE OF CELLULAR GROUT

		Quantity
Station		(CuYd)
77+08	_	20.6
	Total:	20.6

The quantity at each location includes an additional 15% to account for void volume outside the existing pipe.

CLEANOUT PIPE CULVERT

Material in existing pipe culvert will be cleaned out by water flushing or other approved methods.

Material removed from the pipe culvert will become property of the Contractor for disposal.

The Contractor will implement appropriate sediment control measures prior to water flushing to prevent discharges from the project boundaries.

The pipe culvert will be cleaned to the satisfaction of the Engineer.

All costs to dewater, clean pipe, and dispose of removed materials will be incidental to the contract unit price per each for "Cleanout Pipe Culvert".

CLEANOUT FOR CULVERT TREATMENT

Cleanout of pipe culvert will be done in advance of the culvert lining.

Material in existing pipe culvert will be cleaned out by water flushing or other approved methods.

Material removed from the pipe culvert will become property of the Contractor for disposal.

The Contractor will implement appropriate sediment control measures prior to water flushing to prevent discharges from the project boundaries.

The pipe culvert will be cleaned to the satisfaction of the Engineer.

All costs to dewater, clean pipe, and dispose of removed materials will be incidental to the contract unit price per each for "Cleanout Pipe Culvert".

REMOVE & RESET PIPE

The Contractor will tie each section of pipe to the adjacent sections with tie bolts conforming to Standard Plate 450.18. All costs for drilling holes, furnishing, and installing the tie bolt assembly will be incidental to the corresponding pipe bid item.

Existing tie bolts, if any, may be salvaged and reused if condition is acceptable to the Engineer.

CULVERT LINING

Pipe culvert lengths shown in the Table of Mainline Culvert Work were obtained from the original grading plans and were not verified in the field.

The Contractor will submit to the Area Engineer a minimum of 2 week prior to the Preconstruction Meeting a detailed plan of how the pipe culvert cleaning and inspection will be staged. The plan will show how the Contractor is going to maintain traffic at each pipe culvert site, where equipment is going to be stored, the total length of the workspace if a lane of traffic needs to be closed to traffic, and the methods used to prevent material removed from the pipe culverts from entering the waterway. These plans will be approved by the Area Engineer prior to starting work on the pipe culvert cleaning and lining.

Sediment control may be required if water is flowing through the pipe culvert at the time of cleaning. Otherwise, sediment control is not anticipated.

The Contractor will implement appropriate sediment control measures prior to water flushing to prevent discharges beyond the project boundaries.

Wattles have been provided in the Estimate of Quantities and will be used to capture pipe cleanout material. Placement of the wattles will be as directed by the Engineer.

ENGINEER DRAWING AND DESIGN CALCULATION SUBMITTALS

The Contractor will submit the engineering drawing and design calculations for the culvert liners, as required by the various culvert lining Special Provision in Adobe PDF format.

Adobe PDF submittals will be sent to the following email addresses: <u>Paul.Knofczynski@kljeng.com</u>

HIGH TENSION CABLE GUARDRAIL

The Contractor will furnish and install a high tension cable guardrail system that meets the Test Level 3 crash testing requirements of the Manual for Assessing Safety Hardware (MASH). The maximum dynamic deflection of the system will be less than 10'-0" and the maximum post spacing will be 10'-6" unless specified otherwise in the plans. High Tension 4 Cable Guardrail will be one of the following products:

Valtir (Trinity) – CASS S3 M10 Brifen – 4 Rope O-Post System

The high tension cable guardrail system will be in compliance with Specifications Section 6.9 Buy America.

The Contractor will install the system according to the manufacturer's installation recommendations except where stated otherwise in the plans. A copy of the detail drawings and installation instructions for the high tension cable guardrail and anchor assemblies will be given to the Engineer a minimum of 4 weeks prior to installation of the high tension cable guardrail system.

All posts will be galvanized and inserted into driven galvanized steel sleeves with soil plates. The driven sleeves must be designed for a minimum frost depth of 42" and to resist the additional lateral component of curved cable sections.

Delineation of the high tension cable guardrail will be in conformance with standard plate 632.40.

The cables provided will be pre-stretched in the factory.

The Contractor will check and adjust the tension of the cables a minimum of 3 weeks after installation and not longer than 6 weeks after installation. Cost for this work will be incidental to the contract unit price per foot for "High Tension 4 Cable Guardrail".

High tension cable guardrail will be installed on a 10:1 or flatter slope and the embankment limits will match the high tension cable guardrail limits. The embankment quantities may vary from plans quantity.

The lengths of high tension cable guardrail stated in the plans are based on a minimum effective length (length of need). The length and location of the high tension cable guardrail at each site will need to be adjusted during construction as necessary depending on the system provided and will be approved by the Design Engineer before installation. When the Valtir (Trinity) CASS S3 M10 system is installed adjacent to one-way traffic roadways, 26' of the anchor assembly on the approach end is considered non-effective, and 51' on the non-approach end is considered non-effective; however, when the same system is installed adjacent to two-way traffic roadways, 26' of the anchor assembly on both the approach and non-approach ends is considered non-effective. For Brifen 4 Rope O-Post System installations, the anchor assembly is non-effective.

The Contractor will provide a signed letter of compliance to the Engineer upon completion of the high tension cable guardrail installation(s) stating that the high tension cable barrier system has been installed in conformance to the manufacturer installation instructions and specifications, meets the Test Level 3 crash test requirements of MASH, and is terminated with an approved anchor assembly.

The high tension cable guardrail will be measured along the centerline of the cable guardrail from the beginning to the end of the minimum effective length.

All costs for furnishing and installing the high tension cable guardrail system including all labor, materials, and equipment will be incidental to the contract unit price per foot for "High Tension 4 Cable Guardrail".

Shop drawings of the individual components comprising the High Tension Cable Guardrail shall be provided to the Pierre Area Office.

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B6	B54
D · I4			

Revised 4/26/24 EJW

HIGH TENSION CABLE GUARDRAIL ANCHOR ASSEMBLY

The beginning and end of each "run" of high tension cable guardrail will terminate with an anchor assembly. The High Tension Cable Anchor Assemblies will be one of the following products:

Valtir (Trinity) – CASS Cable Terminal (CCT) Brifen – MASH Gating Terminal (MGT)

The footing(s) for the anchor assembly will be designed to allow for 1 inch maximum of lateral deflection. The allowable design soil pressure will be 1000 psf. The top 2 feet of soil pressure will be neglected in the design of the footing(s). The footing(s) will be a minimum of 5' deep. The footing(s) design will be submitted through proper channels to the Office of Bridge Design for a one-time approval. Any changes to the anchor assembly that could affect footing size including configuration changes such as different number of cables and different number of footings will be resubmitted for approval. The approval will be obtained a minimum of 4 weeks prior to construction of the anchor footing(s).

Delineation of the high tension cable guardrail anchor assembly will be in conformance with standard plate 632.40.

All costs for furnishing and installing the High Tension Cable Guardrail Anchor Assembly including all labor, equipment, and materials which include the anchor footing(s), hardware, and all attachments to the anchor footing(s), will be incidental to the contract unit price per each for "High Tension Cable Guardrail Anchor Assembly".

Shop drawings of the individual components comprising the High Tension Cable Guardrail Anchor Assembly will be provided to the Pierre Area Office.

				Remove Fence		of-Way nce	Fence Panel	Tempora	ry Fence
			Side		Type 2	Туре 3	3 Post	Type 2	Туре 3
Statio	Station to Station			Ft	Ft	Ft	Each	Ft	Ft
e 76+04	4	e 76+77	R	246		70	2		176
f 227+4	8	f 228+28	L	230	80		2	150	
		Т	OTALS:	476	80	70	4	150	176

T

										STATE OF SOUTH DAKOTA	P 1806(23)186	B7	TOTAL SHEET B56
			<u></u>			1				Rev 9-26-2	23 PK		
			Remove Fence		of-Way nce	Fence Pane		ary Fence					
		Side	T ence	Type 2	Туре 3	3 Pos	t Type 2	Туре 3					
Station to	Station	(L/R)	Ft	Ft Ft Each		Ft	Ft						
e 76+04	e 76+77	R	246		70	2		176					
227+48	f 228+28	L	230	80		2	150						
	т	DTALS:	476	80	70	4	150	176					
BLE OF G	UARDRAI	<u>L</u>		Remove	e 3 4 Ca	able	High	Remove	Straight	Curved Cla	ss Guardrail		
	Location				ail Ten Guar	gh sion	Tension Cable Guardrail Anchor Assembly	Beam Guardrail	Class A Beam Guardrail with Wood Posts	A Beam Guardrail w CRT Post	special vith Anchor		
				(Ft)	(F	Tt)	(Each)	(Ft)	(Ft)	(Ft)	(Each)		
Spillway													
103+53		470						92	62.5	37.5	1		
Structure N Structure		176		320	28	2	2						
Structur				320	28		2						
Olluciul	0111.		Totals:	640	56		4	92	62.5	37.5	1		

TABLE OF PIPE QUANTITIES

			1		Dee								DCD	F 1	d Fard											1				1		-			1
						nove Reset	Re	eset		Rer	nove			Flare Sectio		(CMP Er	nd Section	on	RCP		СМР		в	or	C	IPP Lin	er		PVC		LION		Type 2	
Culvert #	MRM	Side	In Place Culvert Size and Type	End Type	Pipe	End Section	Pipe	End Section			Pipe	End Section	18"					30" Sloped	Flateu				12.5° Elbow	U	Cleanout for Culvert Treatment	18"	24"	36"	Cellular Grout	Coated Bank & Channel Protection Gabion		Con Furnish	B Riprap	Object Marker Back to Back	Commonte
С		+		Flared	Ft	Each	Ft	Each	Each	i Ft	Ft	Each	Each	Each	Each	Each	Each	Each	Each	Ft	Ft	Ft	Each	Each	Each	Ft	Ft	Ft	CuYd	CuYd	SqYd	CuYd		Each	
		Lt	10'x5' RCBC	Flared																											65		51.9		Install Riprap
		Lt	10'x5' RCBC	Flared Flared																											61		47.9		Install Riprap
0	186.720	Lt	30" CMP Downspout	Sloped N/A							50	1						1				50	2							6.0	19				Replace Downspout
1	186.937	Lt Rt	2 - 11'x5' RCBC	Flared Flared																				1										4	See Section E
2	186.965	Lt Rt	45"x60" RCP Arch	Flared Flared																														4	Cleanout Culvert
3	187.286	Lt	4-45"x54" CMP Arches									4							4					4										4	Remove and Replace Ends, Cleanout Culverts
4	187.907	Lt	- 3- 78" CMPs	None None																				3										4	Cleanout Culverts
5	188.978	Lt	7- 48" Arch CMP	Flared Flared																														4	No Work Needed
6	189.824	Lt	3-96" CMPs	None None																				3										4	Cleanout Culverts
7	190.263	Lt	4-45"x54" CMP Arches									4							4					4										4	Remove and Replace Ends, Cleanout Culverts
8	190.270	Lt	18"x30" CMP Arch																					1										2	Cleanout Culvert
9	190.806	Lt		None None																				1										2	Cleanout Culvert
10	191.614	Lt	18" CMP	None None							70	1		1						*72														2	Remove and Replace Culvert *Install Gasketed Pipe
10	192.313	Lt	18" CMP	None None							- 74	1		1						*50														2	Remove and Replace Culvert *Install Gasketed Pipe
	192.513	It	60"CMP	None None																				1										4	Cleanout Culvert
12	192.690	Lt	18" CMP	Flared																				1						Shin o	ROFESSI	ON AL		2	Cleanout Culvert
13	192.870	Lt	36" CMP	Flared																				1						LERE	PAUL A	KI NG I		2	Cleanout Culvert
		Lt	18" CMP	Flared Flared																				1						Park w	FOUTH DAYO		<u>y</u>	2	Cleanout Culvert
15	193.047	Lt	18" CMP	Flared None																					1	84				Contraction of Contraction	4-18-24	4 mmmm		2	Install CIPP Liner
16	193.208	Lt	36" CMP	None None																					1			82						2	Install CIPP Liner
17	193.311	Lt	80"x80" Galv.	None -																															No Work Needed
18	193.858	-	Grate	-	0	0	0	0	0	0	194	21	0	4	0	0	0	1	16	122	0	50	2	21	2	84	0	82	0	6	145	0	99.8	50	

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B8	B56

Revised 4/18/24 pak

TABLE OF PIPE QUANTITIES

					Rem for R	nove Reset	Rese	et		Rem	ove			Flared		c	MP En	d Sectio	n	RCP		СМР		e	r ent	C	IPP Lir	ner		PVC		row		Type 2	
Culvert #	MRM	Side	In Place Culvert Size and Type	End Type	Pipe	End Section			Cattle Pass End Section	Cattle Pass	Pipe	End Section	18"	24"	30"			30" Sloped	Flateu				12.5° Elbow	Cleanout Pipe Culvert	Cleanout for Culvert Treatment	18"	24"	36"	Cellular Grout	Coated Bank & Channel Protection Gabion	Type B Drainag e Fabric	C Furni		Object Marker Back to Back	Comments
ŭ		1+		Flored	Ft 8	Each	Ft E 8	ach E	Each	Ft	Ft	Each	Each	Each	Each	Each	Each	Each	Each	Ft	Ft	Ft	Each	Each	Each	Ft	Ft	Ft	CuYd	CuYd	SqYd	CuYd	Ton	Each	Remove and Reset 16' of Culvert,
19	194.080	Lt Rt	24" RCP	Flared Flared	8		8					1		1																				2	Remove and Replace Ends
20	194.213	Lt Rt	18" CMP	Flared Flared								1 1				1 1									1	121								2	Remove and Replace Ends, Install CIPP Liner, Cleanout, Regrade to Reestablish Ditch Drainage
21	194.878	Lt Rt	18" CMP	Flared Flared								1 1				1 1								1										2	Remove and Replace End, Cleanout Culvert
22	195.036	Lt Rt	24" CMP	Flared Flared								1 1					1 1								1		87							2	Remove and Replace Ends, Install CIPP Liner
23	195.197	Lt Rt	24" CMP	Flared Flared	8		8					1 1					1 1																	2	Remove and Reset 8' of Culvert, Remove and Replace Ends
24	195.433	Lt Rt	- 18" CMP	Flared Flared								1 1				1 1																		2	Remove and Replace Ends
25	195.897	Lt Rt	18" CMP	Flared Flared								1 1				1 1																		2	Remove and Replace Ends
26	196.273	Lt Rt	24" CMP	Flared Flared	8		8					1 1					1 1																	2	Remove and Reset 8' of Culvert, Remove and Replace Ends
27	196.607	Lt Rt	24" CMP	Flared Flared																				1										2	Cleanout Culvert
28	196.732	Lt Rt	18" RCP-CMP Downspout	Flared Flared																														2	No Work Needed
29	197.377	Lt Rt	18" RCP	Flared Flared	16 16		16 16					1 1	1 1																					2	Remove and Reset 32' of Culvert, Remove and Replace Ends
30	197.860	Lt Rt	18" RCP	Flared Flared								1 1	1																					2	Remove and Replace Ends
31	198.174	Lt Rt	30" RCP	Flared Flared								1 1			1 1									1										2	Remove and Replace Ends
32	198.522	Lt Rt	18" RCP	Flared Flared								1 1	1 1											1										2	Remove and Replace Ends
33	198.778	Lt Rt	18" CMP	Flared Flared							72	1		1						62														2	Remove and Replace Culvert
34	198.903	Lt Rt	4'x6' RCP Cattle Pass	Flared Flared					1 1	8 8							1 1				86								20.6			80		2	See Layout for Installing Culvert in Existing RC Cattle Pass
35	198.911	Lt Rt	24" RCP	Flared Flared	8 8			1 1																1										2	Remove and reset 16' of Culvert, Remove and Replace Ends
36	199.130	Lt Rt	24" RCP	Flared Flared																														2	No Work Needed
	•		ototal	•	80	2	80	2	2	16	72	26	6	4	2	8	8	0	0	62	86	0	0	5	2	121	87	0	20.6	0	0	80	0	36	

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B9	B56
Revised 4	/26/24 EJW		

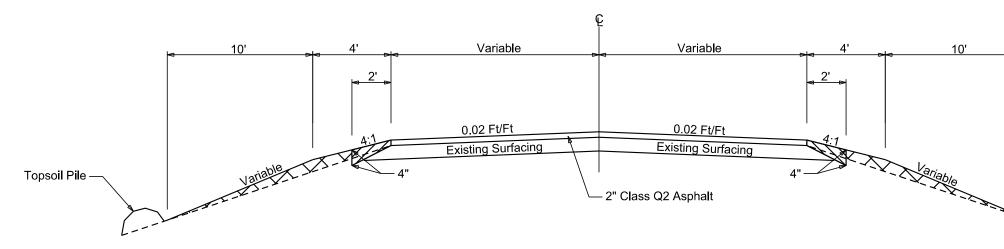
TABLE OF PIPE QUANTITIES

					Rem for F	nove Reset	Reset	:		Remo	ove		RCP I S	Flared Sectior		0	CMP Er	nd Sect	ion	RC	Р	СМ	P	be	or nent	C	IPP Li	ner		PVC		row	Ì	Type 2	
Culvert #	MRM	Side	In Place Culvert Size and Type	End Type	Pipe	End Section	Pipe End Section			Cat	Pipe	End Section	18"			18" Flared			ed Flare	h Ci:	3 14 Ga	a 14 Ga	a Elbow	Clear	Ö		24"		Cellula Grout	Channel Protection Gabion		Contractor Furnished Borrow		Object Marker Back to Back	Comments
Ū				E 1 1	Ft	Each	Ft Ea	ch Ea	ich	Ft	Ft I	Each	Each	Each	Each	Each	Each	Eacl	1 Eac	h Ft	Ft	Ft	Each	Each	Each	Ft	Ft	Ft	CuYd	CuYd	SqYd	CuYd	Ton	Each	
37	199.352	Lt Rt	24" RCP	Flared Flared																														2	No Work Needed
38	199.768	Lt Rt	18" RCP	Flared Flared		1 1	1		_	_														1										2	Remove and Reset Ends, Cleanout
39	199.937	Lt Rt	18" Slip Lined CMP	Flared Flared					—																										No Work Needed
40	200.008	Lt Rt	18" RCP	Flared Flared								1	1									_												2	Remove and Replace Ends
		Lt	24" Slip Lined	Flared								1	I											1			+								No Work Needed
41	200.841	Rt Lt	RCP 18" RCP	Flared Flared								1	1												1	73								2	Remove and Replace End, Install
42	200.952	Rt Lt	24" Slip Lined	Flared Flared								1	1						_]	- '	10								2	CIPP Liner
43	201.073	Rt	CMP	Flared																															No Work Needed
44	201.420	Lt Rt	18" RCP	Flared Flared								1 1	1 1												1	80								2	Remove and Replace Ends, Install CIPP Liner
	201.585	Lt Rt	18" RCP	Flared Flared								1 1	1 1												1	75								2	Remove and Replace Ends, Install CIPP Liner
46	201.782	Lt Rt	24" CMP	Flared Flared																	_													2	No Work Needed
		Lt	18" RCP	Flared								1	1											1										2	Remove and Replace Ends, Cleanout
47	201.942	Rt Lt	24" RCP	Flared Flared								1	1																					2	No Work Needed
48	202.939	Rt Lt	24" RCP	Flared Flared																				<u> </u>										2	Remove and Reset 8' of Culvert,
49	203.484	Rt		Flared		8	8	3						1																 					Install End Section
50	203.726	Lt Rt	18" RCP	Flared Flared																														2	No Work Needed
51	203.982	Lt Rt	18" RCP	Flared Flared								1 1	1 1											1										2	Remove and Replace Ends, Cleanout
52	204.352	Lt Rt	18" RCP	Flared Flared								1 1	1 1											1										2	Remove and Replace Ends, Cleanout
53	205.072	Lt Rt	24" RCP	Flared Flared																														2	Reprofile ditch to reestablish drainage
	205.393	Lt Rt	18" RCP	Flared Flared														<u> </u>	_				1	1										2	No Work Needed
	200.000		ototal		0	10	0 1	0 0	2	0	0	13	13	1	0	0	0	0	0	0	0	0	0	4	3	228	0	0	0	0	0	0	0	30	

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B10	B56

Revised 3/7/24 pak

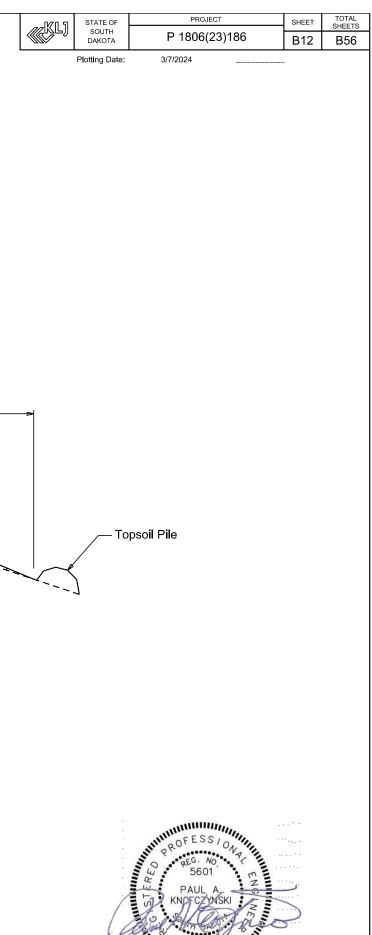
																																S	STATE OF SOUTH		PROJECT SHEET SHEET
														TA	R	I F	- ()F	ΡΙ	PF	= (Δ	ΤL	ITI	F _S							DAKOTA		P 1806(23)186 B11
																	- `	/ 1	• •													R	evised	4/26/24 E	EJW
					Rem		Re	set		Rem	ove			Flared Er	nd	CM	IP End	l Sectio	n	RCP		СМР			t		CIPP Lir	er		PVC		ž			
Culvert #	MRM	Side	In Place Culvert Size and Type	End Type	Fipe Pipe	End Section a	Pipe		Cattle Pass End Section	Cattle Pass	Pipe	End Section	18"	24" 3)" F		24"	30"	54"	24"	24"	30"	12.5° Elbow	Cleanout Pipe Culvert	Cleanout for Culvert Treatment	18"	24"	36"	Cellula Grout	Coated r Bank &	Type B Drainag e Fabric	Contractor Furnished Borrow	Class B Ripra	Type 2 S Object Marker P Back to Back	Comments
Cul					Ft		Ft		– Each		Ft		Each	Each Ea	ch E	ach I	Each	Each	Each	Ft	Ft	Ft	Each	Each			Ft	Ft	CuYd	CuYd	SqYd	CuYd	Ton	Each	
	005 047	Lt	18" RCP	Flared	16		16					1	1																					2	Remove and Reset 32' of Culvert
	205.917	Rt Lt Rt	24" RCP	Flared Flared Flared	16		16					1	1																					2	Cleanout culvert
	200.110	Lt	18" RCP	Flared								1	1											1										2	Cleanout Culvert
57	207.497	Rt		Flared								1	1												<u> </u>									<u> </u>	
58	207.629	Lt Rt	18" RCP	Flared Flared							$\left \right $	1	1											-	1	60								2	Remove and Replace Ends, Install CIPP Liner
	207.904	Lt Rt	24" RCP	Flared Flared	16 16		16 16					1	-	1	+									-	1		126			4.5	15			2	Remove and Reset 32' of Culvert, Install CIPP Liner
	208.068	Lt Rt	18" RCP	Flared Flared								1 1	1 1													54								2	Remove and Replace Ends, Install CIPP Liner
61	208.213	Lt Rt	30" RCP	Flared Flared																														2	No Work Needed
62	208.271	Lt Rt	18" RCP	Flared Flared																														2	No Work Needed
63	209.369	Lt Rt	24" RCP	Flared Flared								1		1																				2	Remove and Replace End
64	209.927	Lt Rt	24" CMP	Flared Flared								1 1					1 1							- 1										2	Remove and Replace Ends, Cleanou
65	211.351	Lt Rt	24' CMP	Flared Flared								1					1 1																	2	Remove and Replace Ends
66	211.671	Lt Rt	18" RCP	Flared Flared								1	1 1											-	1	103								2	Remove and Replace Ends, Install CIPP Liner
67	211.820		24" RCP	Flared Flared	16 16		16 16					1 1		1										-										2	Remove and Reset 16' of Culvert, Remove and Replace Ends
68	217.500		30" CMP	Flared Flared											+									-										2	No Work Needed
69	217.950		24" CMP	Flared Flared																				-										2	No Work Needed
70	218.400		24" CMP	Flared Flared																				-			<u> </u>							2	No Work Needed
71	218.450	Lt Rt	24" CMP	Flared Flared																				-										2	No Work Needed
72	218.900	Lt Rt	30" CMP	Flared Flared																										6	19			2	Install gabions
73	219.800	Lt Rt	24" CMP	Flared Flared											+											<u> </u>								2	No Work Needed
74	220.600		24" CMP	Flared Flared											+																			2	No Work Needed
75	220.950			Flared Flared																				-										2	
	00	Sub	total vject Total		96 176	0 12	96 176	0 12	0 2	0 16	0 266	19 79	10 29	5 (14 (0	4 12	0	0 16	0 184	0 86	0 50	0	2 32	3 10	217 650	126 213	0 82		10.5 16.5	34 179	0 80	0 99.8	4	HIN ROFESSION
	0		<u>, , , , , , , , , , , , , , , , , , , </u>		10		1,0	**	2	10	200		25	-1	- 1	~	±£	-	-10	104				52		0.00	213		20.0	10.3	1.5				PAUL A. KNOFZZYNSKY


4/29/24 mm

TYPICAL GRADING SECTION

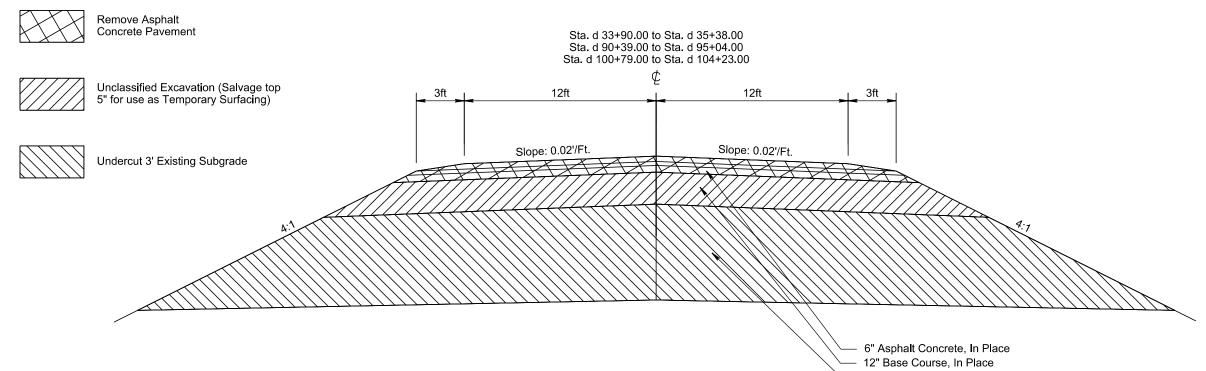
Gravel Cushion, Salvaged or Gravel Cushion, Salvaged, State Furnished Station d -0+37.64 to Station h 213+52.00

Contractor Furnished Borrow



SEQUENCE OF OPERATIONS

Blade back 3" of topsoil to allow placement of borrow and granular material.
 Place and blade adequate borrow material along the shoulder to provide the necessary


section, as shown.

Complete asphalt concrete resurfacing
 Blade the shoulder to allow for the 2' of granular material, as per the section shown.
 Fine grade the inslope to provide the slopes, as indicated in the grading section.
 Replace the topsoil, mulch and seed the disturbed areas.

1000000

FAULT-HEAVE REPAIR

Subgrade, In Place

0/20 51	STATE OF	PROJECT	SHEET	TOTAL
<i>nn</i> KLI	SOUTH			SHEETS
	DAKOTA	P 1806(23)186	B13	B56
	Plotting Date:	3/7/2024		

HORIZONTAL ALIGNMENT DATA

MAINLINE- US 14 to 204

Type POB	<u>Station</u> -0+75.00			Northing 743158.548	Easting 1952287.481
100	0170.00	TL= 15157.52	N 0°19'37" E	, 19190.010	1992207.101
PC	150+82.52	10107.02		758315.826	1952374.006
PI		R= 5728.65	Delta= 15°35'29" L		1952378.483
PT	166+41.42			759856.732	1952171.999
		TL= 3572.20	N 15°15'52" W		
	Equation:	Sta. 201+13.	85 Bk = Sta. a -11+34	4.45 Ah	
PC	a -10+34.68			763302.910	1951231.531
PI	a -7+67.63	R = 1145.08	Delta= 26°15'19" L	763560.539	1951161.224
ΡT	a -5+09.96			763760.487	1950984.202
		TL= 1530.41	N 41°31'11" W		
PC	a 10+20.46			764906.350	1949969.728
PI	a 14+02.16	R= 1145.08	Delta= 36°52'15" L	765192.142	1949716.706
ΡT	a 17+57.33			765268.957	1949342.811
		TL= 1047.27	N 78°23'26" W		
	Equation:	Sta. a 19+18	.73 Bk = Sta. b $19+52$	2.58 Ah	
PC	b 28+38.45			765268.957	1949342.811
PI		R= 1678.85	Delta= 78°19'45" R		1946977.433
ΡT	b 51+33.61		N 0°03'41" W	767122.416	1946975.969
	Equation	TL= 767.35	.30 Bk = Sta. c 52+5	2 58 Ab	
POE	c 58+99.24	5ta. D 52154	.50 Br = 50 a. C 5215	767122.416	1946975.969
101		ation: Sta. d	c 58+99.24 Bk = Sta.		1910970.909
	_				
Trmo	Station	NLINE- 204 (O	SPILLWAY (Reverse	•	Facting
<u>Type</u> POB	d 0+00.00			<u>Northing</u>	<u>Easting</u> 1946929.456
IOD	a 0100.00	TL= 633.67	N 79°52'02" W	101091.912	1940929.430
PC	d 6+33.67			768009.395	1946305.667
PI	d 8+09.03	R= 555.00	Delta= 35°04'04" R	768040.245	1946133.050
PT	d 9+76.36			768164.672	1946009.492
		TL= 361.93	N 44°47'57" W		
PC	d 13+35.29			768348.745	1945827.106
PI	d 14+86.06	R= 1275.00	Delta= 13°29'15" L	768528.470	1945648.234
PT	d 16+35.43			768607.723	1945519.979
		TL= 498.05	N 58°18'12" W		

				ST	ATE OF		PROJECT	SHEET	TOTAL
				S			306(23)186	B14	SHEETS B56
NME	ENT DAT	ГА			/ 1-5-24		.00(20)100		000
		.,.		1.00					
PC	d 21+33.47				7688	69.407	1945096.22	1	
PI	d 25+97.09	R= 1275.00	Delta = 39°57'53"	R	7691	12.977	1944701.73	9	
ΡT	d 30+22.81				7695	53.042	1944555.84	2	
		TL= 139.11	N 58°18'12" W						
PC	d 31+61.92				2476	80.096	1850759.86	5	
PI	d 42+15.73	R= 1145.00	Delta= 0°33'03"	L	7696	85.560	1944513.53	6	
PT	d 49+82.93				7706	91.098	1943139.23	8	
		TL= 1222.38	N 89°54'38"	W					
PC	d 62+05.31	1222.30			7706	93.006	1941916.85	0	
PC PI	d 66+03.96	R= 950.00	Delta = 45°31'45"	т		93.628	1941910.85		
	d 69+60.21	R- 930.00	Deila - 45 51 45	Ц		09.584	1941238.48		
PT	a 69+60.21	TL= 992.33	s 44°33'37"	Te7	//04	09.004	1941230.40	9	
DC	d 79+52.54	11- 992.33	5 44 55 57	VV	7607	02.538	1940542.21	1	
PC PI	d 79+52.54 d 85+63.87	R= 715.00	Delta= 81°03'42"	Ð		93.628	1940542.21		
		R- /15.00	Deila- ol 03.42	ĸ					
PT	d 89+64.12	m			/696	23.018	1939616.32	4	
		TL= 1057.49	N 54°22'41"	W					
PC	d 100+21.61	2007.10			7702	38.940	1938756.71	2	
PI		R= 1000.00	Delta= 7°36'40"	R		77.682	1938702.64		
PT	d 101+54.45					23.244	1938654.17		
		TL=	<u>^</u>		,,,,,,,	20.211	1000001.1	-	
		1057.49	N 54°22'41"	W					
PC	d 102+29.54				7703	74.680	1938599.46	9	
PI	d 103+84.99	R= 375.00	Delta= 45°01'46"	R	7704	81.153	1938486.21	7	
PT	d 105+24.26				7706	36.525	1938481.50	4	
		TL= 3.08	N 1°44'15"	W					
PC	d 105+27.34				7706	39.609	1938481.41	1	
PI	d 106+17.27	R= 51.00	N 120°53'02"	L	7707	29.497	1938478.68	4	
PT	d 106+34.95				7706	81.017	1938402.94	1	
		TL= 18.88	s 57°22'43"	W					
POE	d 106+53.82				7706	70.840	1938387.04	0	
	Equ	ation: Sta.	d 106+53.82 = Sta.	е					
	1								

Mainline- SPILLWAY to END (Reverse Stationing)

Туре	Station			Northing	Easting
POB	h 213+28.97			837494.207	1845034.369
		TL= 5131.46	S 20°40'01" E		
PC	h 264+60.43			832692.967	1846845.437
PI	h 268+00.57	R = 3100.00	Delta = 12°31'23" L	832374.718	1946965.483
PT	h 271+37.99			832090.071	1847151.680
		TL= 2954.23	S 30°11'24" E		
PC	h 300+92.22			829617.793	1848768.876
PI	h 305+23.30	R = 1435.00	Delta = 33°26'26" R	829257.046	1849004.852

The coordinates shown on this sheet are based on the South Dakota State Plane Coordinate System. South Zone NAD 83(2011); epoch 2011-NF; Geoid 18; SF = 1.000000000

HORIZONTAL ALIGNMENT DATA

PT	h 309+29.76			828825.977	1849002.968	PI	g 589+18.37	R = 2870.00	Delta =
		TL= 5765.24	S 0°15'02" E			PT	g 595+70.26		
PC	h 366+94.99			823060.794	1848977.769			TL= 1567.63	S
PI	h 370+30.80	R = 2842.00	Delta = 13°25'51" L	822724.989	1848976.301	PC	g 611+37.89		
PT	h 373+63.53			822398.027	1849052.871	PI	g 614+71.11	R = 2875.00	Delta =
		TL= 2335.63	s 13°10'49" E			PT	g 618+01.36		
PC	h 396+99.16			820123.924	1849585.432			TL= 1393.74	S
PI	h 402+62.01	R = 1430.00	Delta = 42°58'09" L	819575.904	1849713.770	PC	g 631+95.09		
PT	h 407+71.59			819262.382	1850181.210	PI	g 634+89.02	R = 2865.00	Delta =
		TL= 163.47	s 57°02'54" e			PT	g 637+80.89		
PC	h 409+35.07			819173.465	1850318.384			TL= 2628.94	S
PI	h 409+67.43	R = 1435.00	Delta = 2°35'04" L	819155.988	1850345.630	PC	g 664+09.83		
PT	h 409+99.78			819139.757	1850373.637	PI	g 667+79.58	R = 2865.00	Delta =
		TL= 35.91	S 59°54'22" E			PT	g 671+45.26		
PC	h 410+35.71			819121.750	1850404.709			TL= 1840.17	S
PI	h 411+73.33	R = 3200.00	Delta = 4°55'31" R	819052.742	1850523.782		Eq	uation: Sta. o	j 679+92.9
PT	h 413+10.79			818973.767	1850636.491	PC	f 9+92.52		
		TL= 3984.91	s 54°58'51" e			PI	f 16+70.53	R = 5700.00	Delta =
PC	h 452+95.70			816687.029	1850636.491	PT	f 23+42.19		
PI	h 455+93.33	R = 2840.00	Delta = 11°57'55" R	816516.236	1854143.726			TL= 4237.17	S
PT	h 458+88.79			816298.622	1854346.767	PC	f 65+79.36		
			s 43°00'56" e			PI	f 75+65.63	R = 5830.00	Delta =
PC	h 464+70.45			815873.331	1854743.574	`	f 85+33.40		
PI	h 470+43.96	R = 2860.00	Delta = 22°40'42" L	815453.994	1855134.826			TL= 2497.62	S
PT	h 476+02.47			815217.929	1855657.506	PC	f 110+31.05		
		TL= 790.73	S 65°41'38" E			PI	f 117+12.29	R = 2950.00	Delta =
PC	h 483+93.20				1856378.145	PT	f 123+70.09		
PI	h 486+62.26	R = 2875	Delta = 10°41'35" R	814781.707	1856623.358			TL= 1434.64	S
	Equa	ation: Sta. h	489+08.43 = Sta. g 4	88+68.07		PC	f 138+04.70		
PT	g 488+89.40			814627.383	1856843.763	PI	f 144+93.42	R = 2836.00	Delta =
		TL= 3892.12	s 55°00'03" e			PT	f 151+55.98		
PC	g 527+81.51				1860032.031			TL= 3359.73	S
PI	g 531+91.34	R = 1420.00	Delta = 31°11'50" L	812159.942	1860367.743	PC	f 185+17.71		
PT	g 535+79.48			812139.909	1860777.078	PI	f 191+47.10	R = 3800.00	Delta =
		TL= 874.00	S 87°11'53" E			PT	f 197+67.05		
PC	g 544+53.48			812097.185	1861650.034			TL= 5966.97	S
PI	g 548+82.94	R = 1420.00	Delta = 33°35'21" R	812076.234	1862078.098	PC	f 257+34.03		
PT	g 552+85.94			811821.963	1862423.097	PI	f 267+74.04	R = 3843.00	Delta =
		TL= 974.58	s 53°36'32" e			PT	f 277+65.39		
PC	g 562+60.52			811243.750	1863207.621			TL= 1048.20	S
PI	g 567+89.53	R = 1905.00	Delta = 31°02'21" R	810929.895	1863633.462	PC	f 288+13.60		
PT	g 572+92.53			810441.405	1863836.498	PI	f 295+34.45	R = 2825.00	Delta =
		TL= 949.73	s 22°34'11" E			РТ	f 302+25.19		
PC	g 582+42.26			809564.413	1864201.012			TL= 1178.53	S

The coordinates shown on this sheet are based on the South Dakota State Plane Coordinate System. South Zone NAD 83(2011); epoch 2011-NF; Geoid 18; SF = 1.000000000

		STATE OF	Р	ROJECT	SHEET	TOTAL
		SOUTH DAKOTA	P 180	06(23)186	B15	SHEETS B56
		L Rev 1-5-2	•	()		
				10000000000	_	
=	26'30'43			1864460.507		
~	40804154		8497.246	1864971.404	Ŧ	
S	49°04'54		- 4 - 0 4 - 0	1000155 070	`	
	12012100		7470.473	1866155.972		
=	13°13'20		7252.244	1866407.762		
~			6982.170	1866602.958	5	
S	35°51'34			1067410 405	_	
	11940154		5852.607			
=	11°42'54		5614.398	1867591.583		
c	04800140		5346.190	1867711.808	5	
5	24°08'40			1000707 145	7	
_	1 4 9 4 0 1 0 7		2947.234			
=	14°42'27		2609.833			
c	20°E1 .07		2321.886	1869170.333	5	
	38°51'07		0 00			
2.3	90 = Sta.			1070224 605	7	
_	12024100		0360.812	1870324.687		
_	13 34 00		9747.766			
C	25°17'07	-	9/4/./00	1871039.598)	
5	25 17 07		5916.552	1872849.397	7	
_	19°12'14	-	5916.552	1873270.659		
_	19 12 14	-	4321.180	1873961.813		
q	44°29'21		-921.100	10/3901.01)	
J	11 29 21		2539 422	1875712.075	5	
=	26°00'28			1876189.495		
	20 00 20			1876405.455		
S	18°28'52		~ ' • • • ' +		-	
			0046.651	1876830.216	5	
=	27°18'00		9393.449			
	0		8913.135			
S	45°46'52					
			6570.057	1879979.987	7	
=	18°52'03		6129.727			
			5859.388			
S	64°38'56					
-			3304.532	1886395.429)	
=	30°17'09		2859.233			
			8200.725			
S	34°21'46					
-	0		1135.453	1888513.944	1	
=	28°37'46		0540.400			
				1889563.065		
S	62°59'32					

HORIZONTAL ALIGNMENT DATA

PC	f 314+03.72			779677.870	1890613.071	PC	f 625+26.31		
PI	f 321+78.16	R = 2874.00	Delta = 30°09'06" R	779326.400	1891303.052		Equ	ation: Sta. f	625+27.6
PT	f 329+16.68			778675.524	1891723.031	PI	e 9+21.67	R = 3812.00	Delta =
		TL= 230.23	S 32°49'47" E			РТ	e 18+09.82		
PC	f 331+45.91			778482.044	1891847.862			TL= 4027.34	S
PI	f 332+33.11	R = 1680.00	Delta = 5°52'28" L	778409.630	1891894.621	PC	e 58+37.16		
PT	f 333+19.16			778342.383	1891948.546	PI	e 70+91.43	R = 1437.00	Delta =
		TL= 91.04	s 38°43'32" e			PT	e 78+99.56		
PC	f 333+19.16				1891948.546			TL= 6538.88	Ν
PI	f 334+10.19	R = 2825	Delta = 21°26'30" L	777854.097	1892340.095	PC	e 144+38.44		
PT	f 344+67.38			777588.024	1892804.066	PI	e 154+27.36	R = 1906.00	Delta =
		TL= 3713.73	S 60°10'02" E			PT	e 162+62.90		
PC	f 381+81.11				1896025.650			TL= 322.14	Ν
PI	f 393+35.09	R = 5725.00	Delta = 22°47'34" R	775166.474	1897026.707	PC	e 165+85.04		
PT	f 404+58.56			774249.420	1897727.199	PI	e 176+40.13	R = 1902.00	Delta =
		TL= 2315.82	S 37°22'28" E			PT	e 185+11.63		
PC					1899132.948			TL= 172.60	S
PI	f 434+91.67	R = 11500.00	Delta = 7°08'18" R	771839.047	1899568.362	PC	e 186+84.24		
ΡT	f 442+07.11			771219.333	1899929.568	PI		R = 1908.00	Delta =
			S 30°14'57" E			РТ	e 196+63.85		
PC	f 457+47.38				1900705.497			TL= 3002.92	S
PI			Delta = 17°42'47" L				e 226+66.76		-
РТ	f 475+09.54						e 239+76.06	R = 3822.50	Delta =
			s 47°57'44" e			РТ	e 251+89.60		
PC	f 507+27.33				1904202.422			TL= 561.82	Ν
PI			Delta = 35°55'13" L			PC	e 256+51.42		
PT	f 516+05.03					PI		R = 1432.00	Delta =
	1 010 00 00		S 83°52'56" E		1901990.091	PT	e 277+08.63	1. 1.01.00	20200
PC	f 518+60.02				1905244.229		0 2 / / 00 00	TL= 2168.64	N
PI			Delta = 31°47'57" L				e 298+77.27		
PT	f 526+37.02		20100 01 1/ 0/ 1		1905955.356	PI		R = 1146.75	Delta= 1
	1 020107.02		s 52°04'59" e		1900900.000	PT	e 319+48.07	11 11 10.70	Derea i
PC	f 544+59.73				1907393.297		0 010 10.07	TL= 285.11	N
PI			Delta = 6°44'49" R			PC	e 322+33.18	11 200.11	
PT	f 557+55.06				1908366.012	PI		R = 2875.00	Delta =
1 1	1 007100.00		s 45°20'10" e		1900300.012	PT	e 338+55.67	10 2070.00	Derea
PC	f 575+85.31				1909667.762	11	0 000000.07	TL= 671.64	N
PI			Delta = 24°02'18" L			POE	e 345+27.30	11- 0/1.04	IN
PT	f 591+67.84				1910230.547	IOE	e 545127.50		
	1 391107.04		S 69°22'28" E		1910990.330				
PC	f 593+69.46				1911179.253				
PC PI			Delta = 21°52'27" R						
PI PT	f 616+14.32		Deila - Zi JZ'ZI' K		1912242.684				
Ρ⊥	1 010+14.32		S 47°30'00" E		1913000.420				
		IT= AII.AA	5 47 30'00" E						

The coordinates shown on this sheet are based on the South Dakota State Plane Coordinate System. South Zone NAD 83(2011); epoch 2011-NF; Geoid 18; SF = 1.000000000

		STATE	OF	P	ROJECT	SHEET	TOTAL
		SOU	тн [P 18	06(23)186	B16	SHEETS B56
	l	Rev 1	-5-24	1 EJW	()	0.10	500
			759	741.733	1913752.813	3	
ta. f	625+27.65 = Sta.	e 0	0+0	0.00			
2.00	Delta = 27°13'21	" Г	759	118.158	1814433.328	3	
			758	874.950	1915323.718	3	
7.34	s 74°43'21	"Е					
				813.767)	
7.00	Delta = 82°13'54	" Г	727	483.273	1920418.688	3	
	<u>,</u>		758	637.443	1920909.697	7	
8.88	N 23°02'45	"Е				_	
				654.459	1923469.460		
6.00	Delta = 54°50'41	" R			1923856.598		
			765	771.909	1924823.515	5	
2.14	N 77°53'26	"Е				_	
					1925138.489		
2.00	Delta = 58°02'11	" R					
0 00	~		765	302.786	1926903.990)	
2.60	S 44°04'22	"Е		1	1005004 044		
0 0 0				178.777			
8.00	Delta = 29°25'01	Г			1927372.431		
2 0 2	s 73°29'23		/04	676.597	1927852.638	5	
2.92	5 13 29 23	· Е	763	000 011	1020721 7/1	1	
2 50	Delta = 37°48'54	и т		823.211	1930731.741 1931987.052		
2.30	Deila - 57 40 54	Ц			1931987.032		
1.82	N 68°41'43	יי די	105	920.033	1933200.070	J	
1.02	N 00 11 13		76/	094.628	1933637.128	2	
2 00	Delta = 82°18'2	чт.					
2.00	DC1CU 02 10 2	ш			1934508.593		
8.64	N 13°36'58	'' W	, 00		1901000.090		
	1. 20 00 00		767	873.567	1933998.066	5	
6.75	Delta= 103°27'53	" R					
					1935109.560		
5.11	N 89°50'55	"Е		-			
			769	291.026	1935394.668	3	
5.00	Delta = 32°20'04	" Г					
			769	740.881	1936931.209	9	
1.64	N 57°30'51	"Е					
			770	101.610	1937497.752	2	

CONTROL DATA

HORIZONTAL AND VERTICAL CONTROL POINTS							
POINT	STATION	OFFSET	DESCRIPTION	NORTHING	EASTING	ELEVATION	
CP	d 78+96.36	0.01' Lt		769742.559	1940581.637	1801.592	
CP	d 79+28.93	0.28' Lt		769719.161	1940558.979	1800.340	
CP	d 105+47.18	3.00' Lt		770660.041	1938479.762	1662.594	
1806_CP100	d 90+12.26	606.15' Rt	Rebar	770143.780	1939930.234	1815.229	
PBM-9	d 9+24.41	394.61' Rt		768433.137	1946299.895	1661.611	
CP500	e 191+76.85	70.75' Rt		764812.213	1927371.748	1803.005	
CP501	28+54.33	904.93' Lt	Nail	746092.999	1951399.287	1469.020	
BUFFALO-1	g 529+34.62	58.16' Rt		812263.160	1860133.900	2149.236	

The coordinates shown on this sheet are based on the South Dakota State Plane Coordinate System. South Zone NAD 83(2011); epoch 2010.00 Geoid 18; SF = 1.0000000000 The elevations shown on this sheet are based on NAVD 88.

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B17	B56

LEGEND

۵

0

0

0

0

0

0

0

₩

4

0

Ŷ

0

 $\overline{}$

ж

+

۲

ø

ф-

Å

 \odot

۲

PS

-04

þ

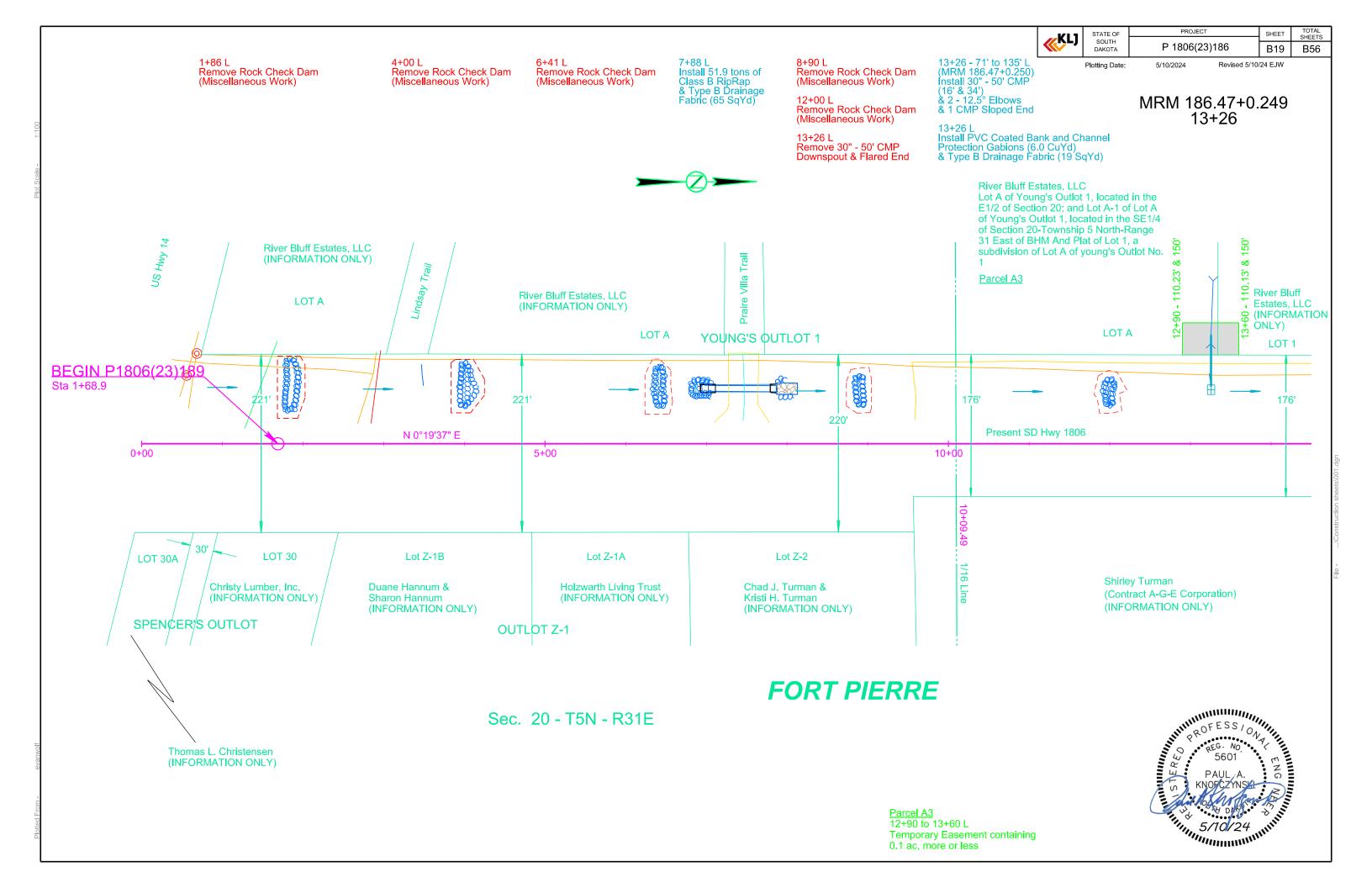
______ _▲_____

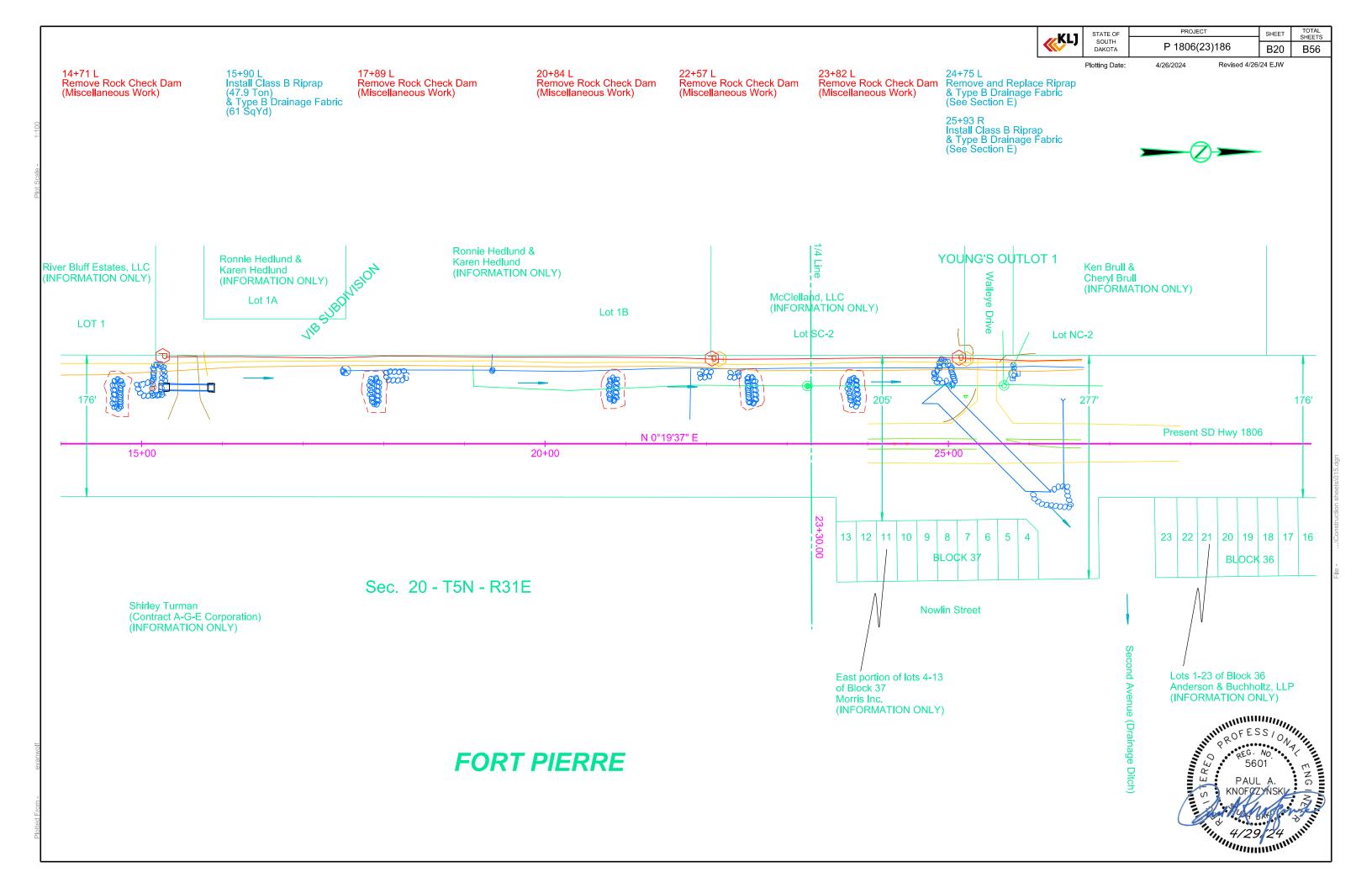
<u>___</u>

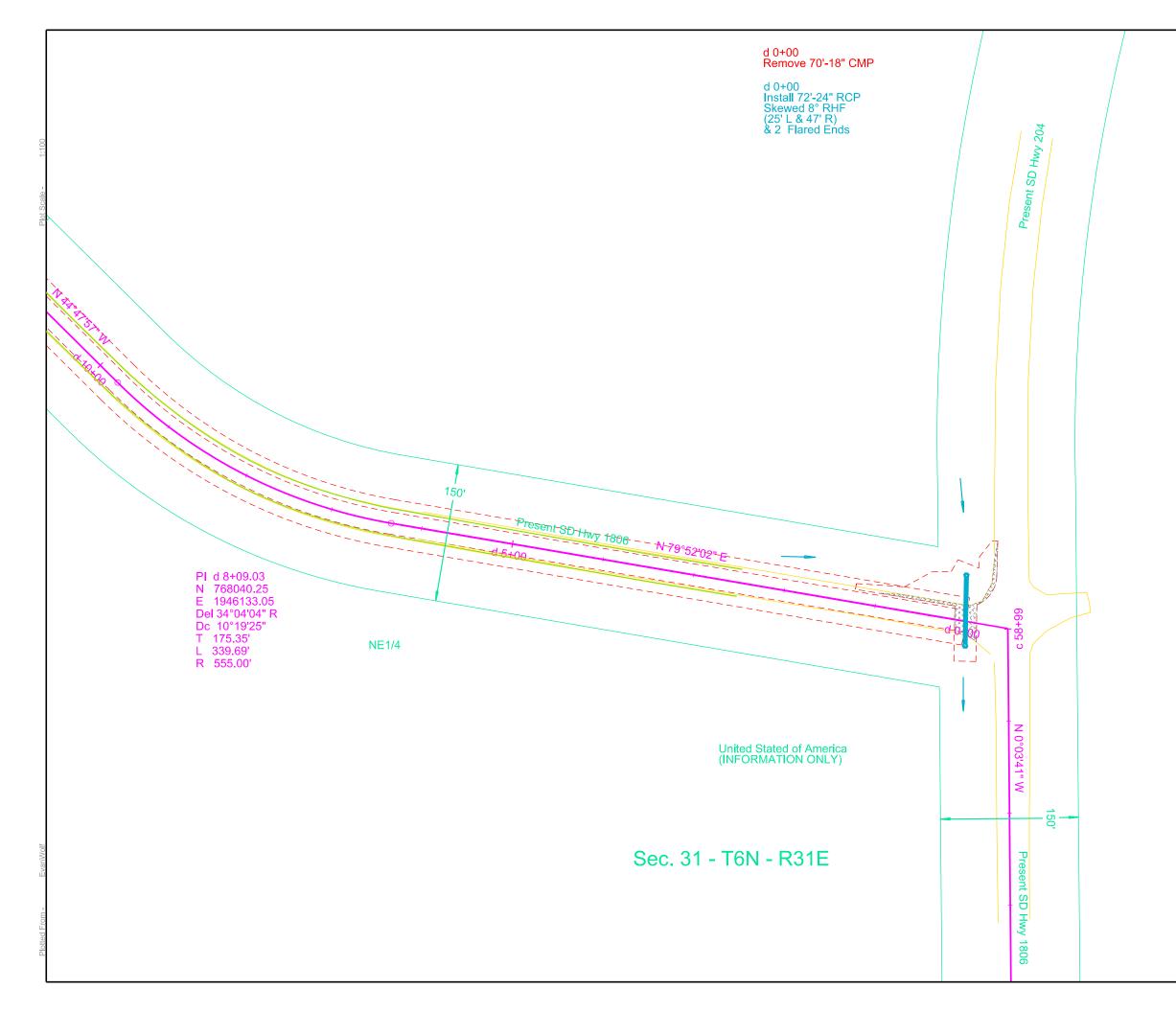
dddar

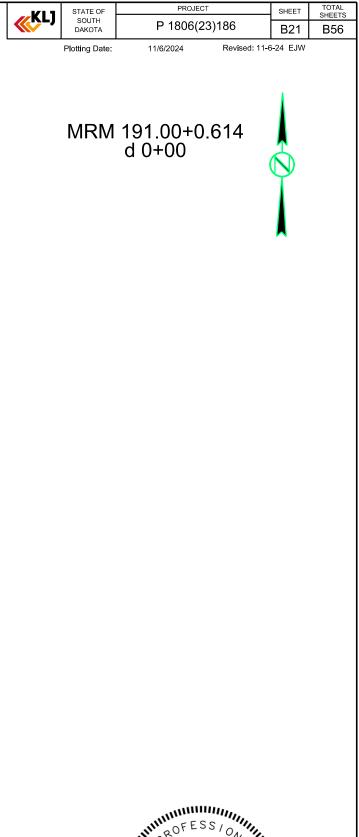
4

Φ

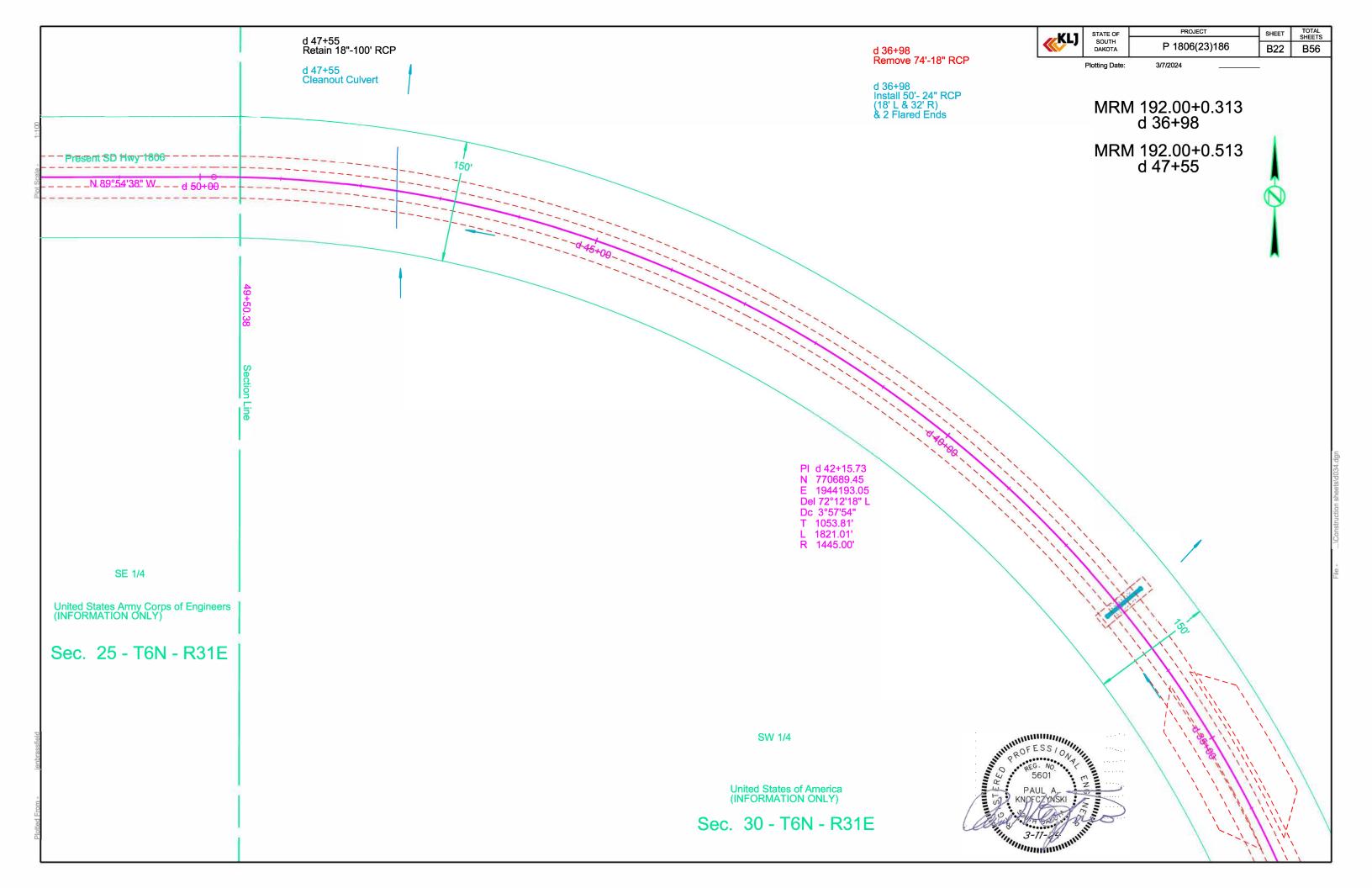

8

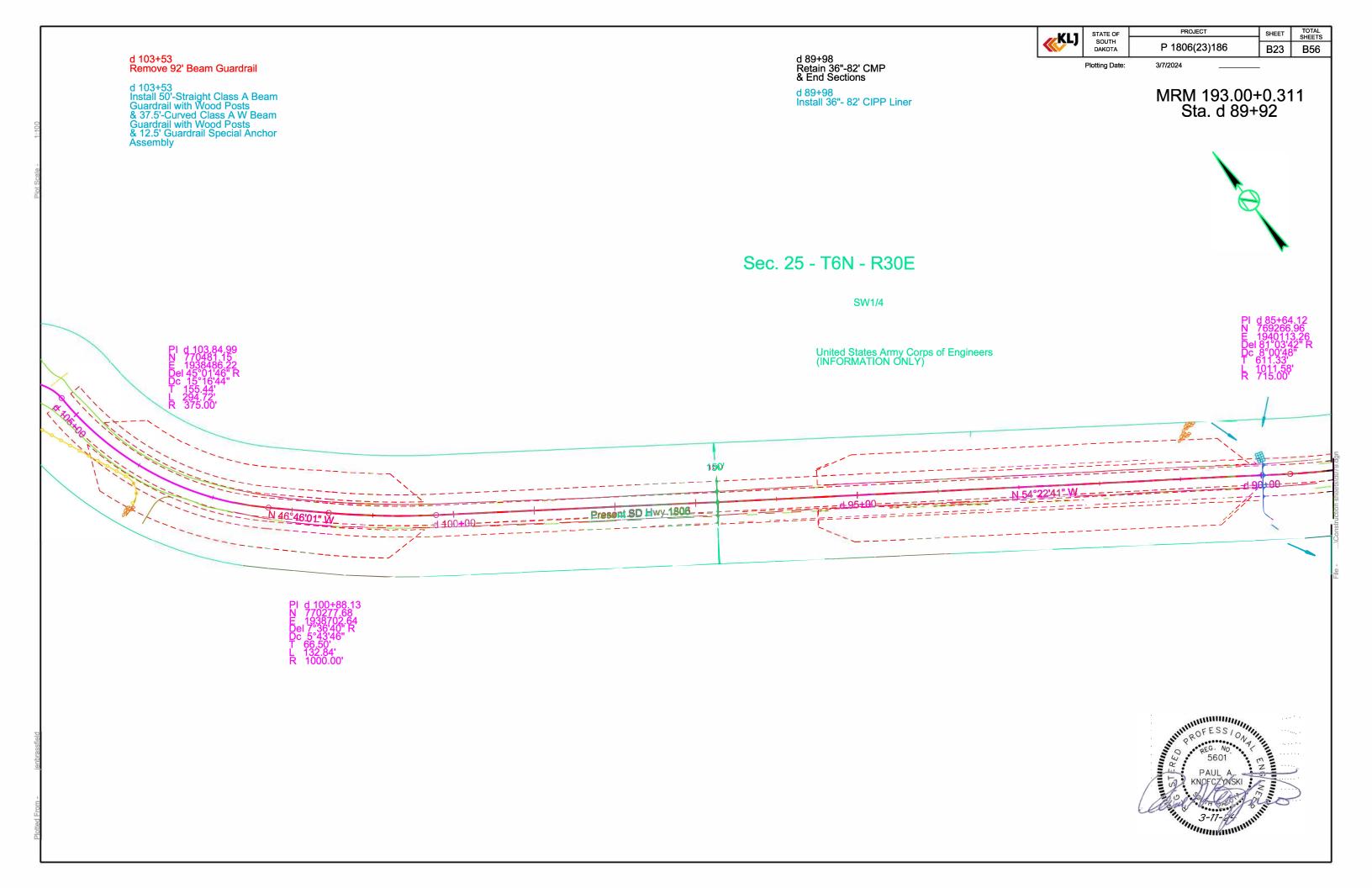

Anchor ____ Antenna Approach Assumed Corner Azimuth Marker BBQ Grill/ Fireplace Bearing Tree A Bench Mark Box Culvert Bridge Brush/Hedge Buildings Bulk Tank Cattle Guard Cemetery ÷ Centerline C Cistern Clothes Line Concrete Symbol **Control Point** A Creek Edge _ _ _ _ Curb/Gutter Curb Dam Grade/Dike/Levee _____ Deck Edge Ditch Block Doorway Threshold Drainage Profile _ - - - -Drop Inlet Edge Of Asphalt Edge Of Concrete Edge Of Gravel Edge Of Other Edge Of Shoulder Electric Transformer/Power Junction Box P Fence Barbwire Fence Chainlink Fence Electric Fence Miscellaneous Fence Rock Fence Snow Fence Wood Fence Woven Fire Hydrant 8 Flag Pole Ρ Flower Bed 7777 Gas Valve Or Meter 0 Gas Pump Island **(B)** Grain Bin Guardrail Gutter ₽ ≫ Guy Pole Haystack Highway ROW Marker Interstate Close Gate Iron Pin \odot Irrigation Ditch ----Lake Edge _____ Lawn Sprinkler \$

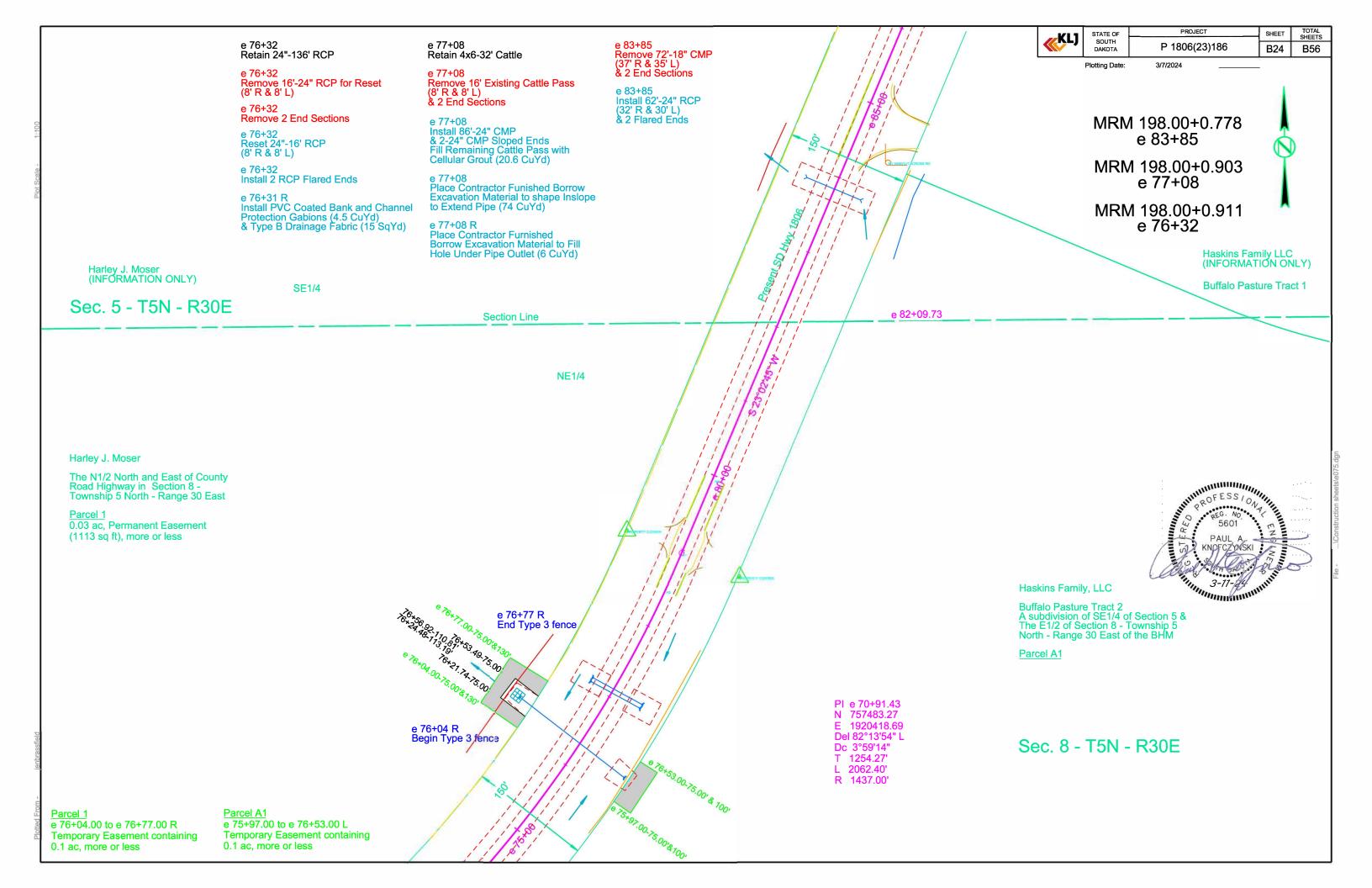

Mailbox
Manhole Electric
Manhole Gas
Manhole Miscellaneous
Manhole Sanitary Sewer
Manhole Storm Sewer
Manhole Telephone
Manhole Water
Merry-Go-Round
Microwave Radio Tower
Miscellaneous Line
Miscellaneous Property Corner
Miscellaneous Post
Overhang Or Encroachment
Overhead Utility Line
Parking Meter
Pedestrian Push Button Pole
Pipe With End Section
•
Pipe With Headwall
Pipe Without End Section
Playground Slide
Playground Swing
Power And Light Pole
Power And Telephone Pole
Power Meter
Power Pole
Power Pole And Transformer
Power Tower Structure
Propane Tank
•
Property Pipe
Property Pipe With Cap
Property Stone
Public Telephone
Railroad Crossing Signal
Railroad Milepost Marker
Railroad Profile
Railroad ROW Marker
Railroad Signs
Railroad Switch
Railroad Track
Railroad Trestle
Rebar
Rebar With Cap
Reference Mark
Retaining Wall
Riprap
River Edge
Rock And Wire Baskets
Rockpiles
•
Satellite Dish
Septic Tank
Shrub Tree
Sidewalk
Sign Face
Sign Post
Slough Or Marsh
Spring
Stream Gauge
Street Marker

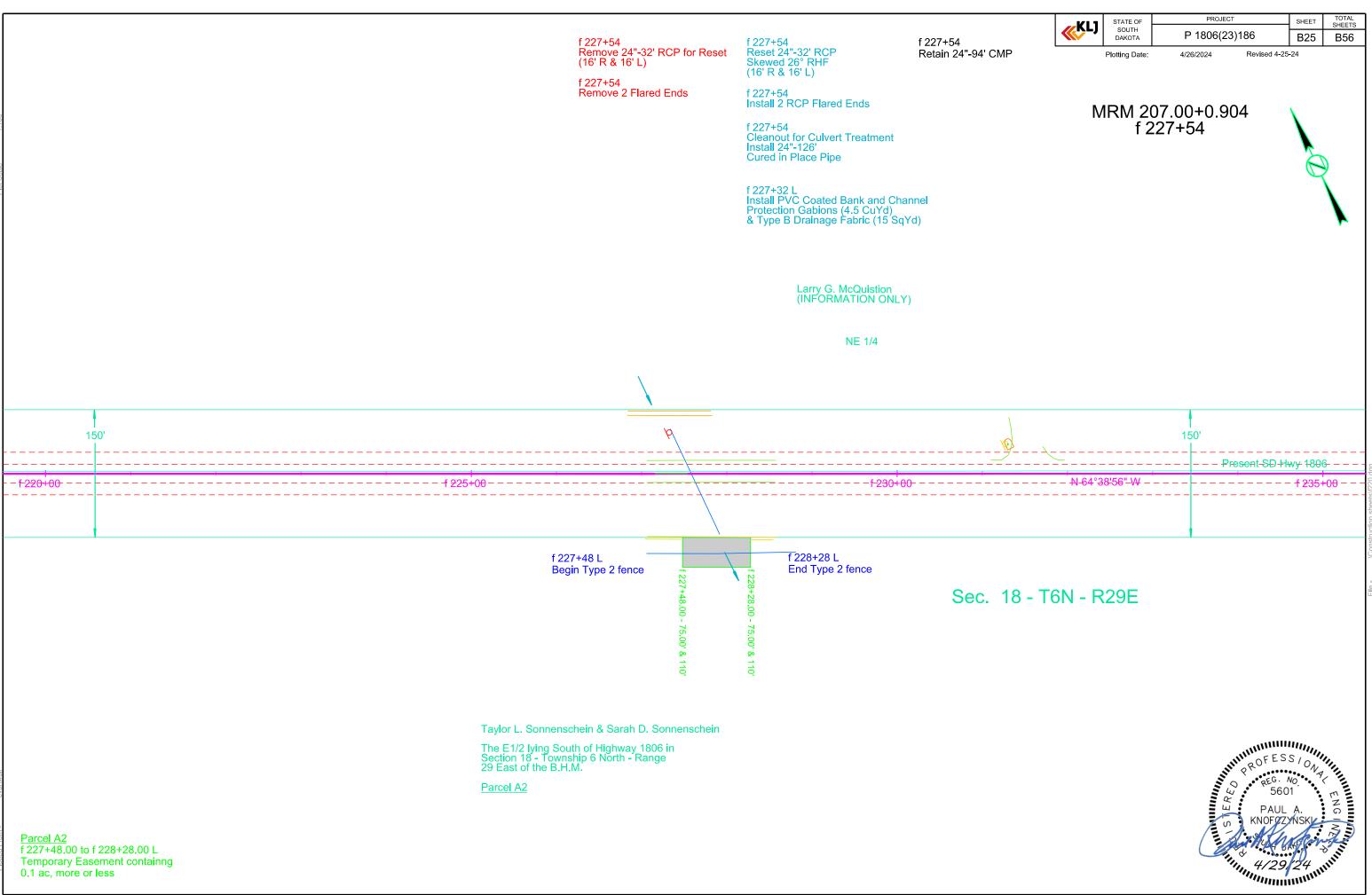

Subsurface Utility Exploration Test Hole	•
Telephone Fiber Optics	— T/F —
Telephone Junction Box	$(\overline{\mathbf{D}})$
Telephone Pole	Ø
Television Cable Jct Box	0
Television Tower	夲
Test Wells/Bore Holes	۸
Traffic Sign Double Face	H H
Traffic Sign One Post	þ
Traffic Sign Two Post	þ
Traffic Signal	\
Trash Barrel	0
Tree Belt	
Tree Coniferous	*
Tree Deciduous	0
Tree Stumps	٨
Triangulation Station	▲
Underground Electric Line	— P —
Underground Gas Line	— G —
Underground High Pressure Gas Line	— HG —
Underground Sanitary Sewer	— s —
Underground Storm Sewer	= s =
Underground Tank	_
Underground Telephone Line	— т —
Underground Television Cable	— TV —
Underground Water Line	— w —
Water Fountain	l
Water Hydrant	Св
Water Meter	()
Water Tower	▲
Water Valve	\oslash
Water Well	\odot
Weir Rock	
Windmill	8
Wingwall	
Witness Corner	(i)
	-

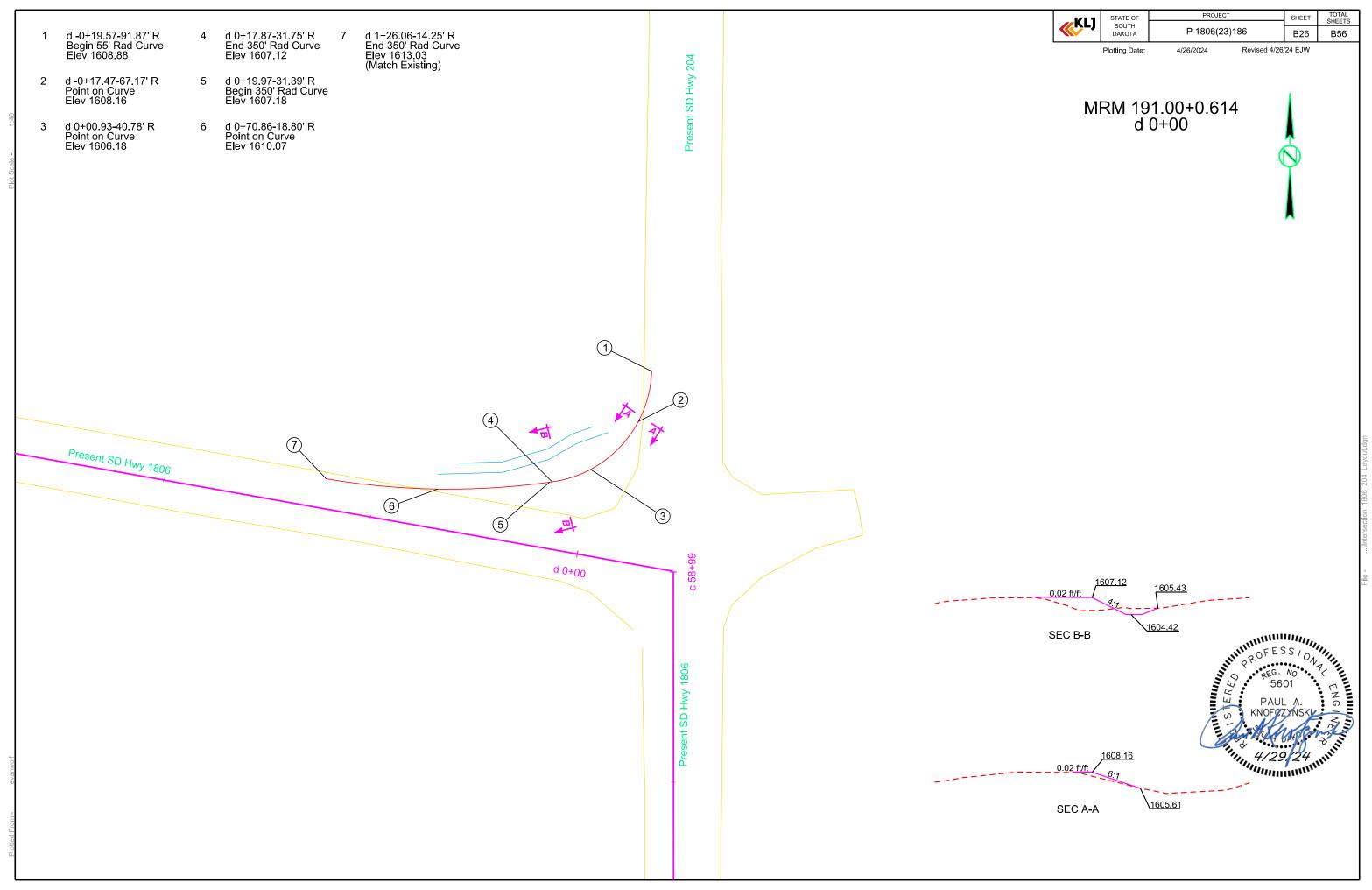
	STATE OF	PRO	JECT	SHEET	TOTAL SHEETS
	SOUTH DAKOTA	P 1806	(23)186	B18	B56
	Plotting Date:	3/7/2024			
State and Natio County Line Section Line Quarter Line Sixteenth Line Property Line Construction L ROW Line New ROW Lin Cut and Fill Lin Control of Acce New Control of Proposed ROW	ine nits ess f Access	3/7/2024			
(After Property	Disposal)				
Drainage Arrov	N				
Remove Conci Remove Conci					
Remove Conci		vay Favement			
Remove Aspha					
Remove Conci					
Remove Conci	rete Media	n Pavement			
Remove Conc	rete Curb a	and/or Gutter			
Detectable Wa Pedestrian Pu and 30" x 48" with 1.5% slop	sh Button Clear Spac				
	6	PA PA PA PA PA PA PA PA PA PA PA PA PA P	ESS/0/101		

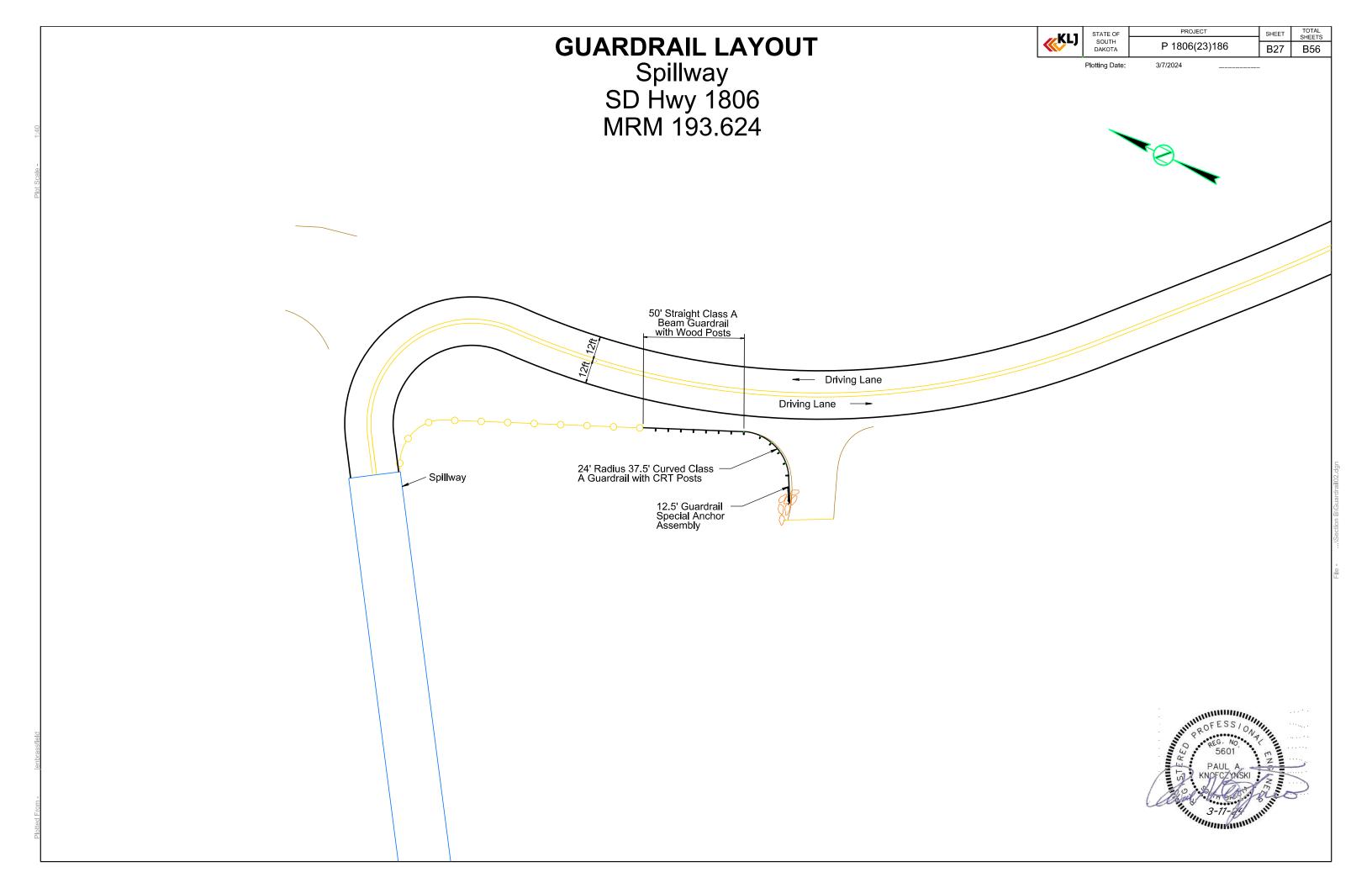


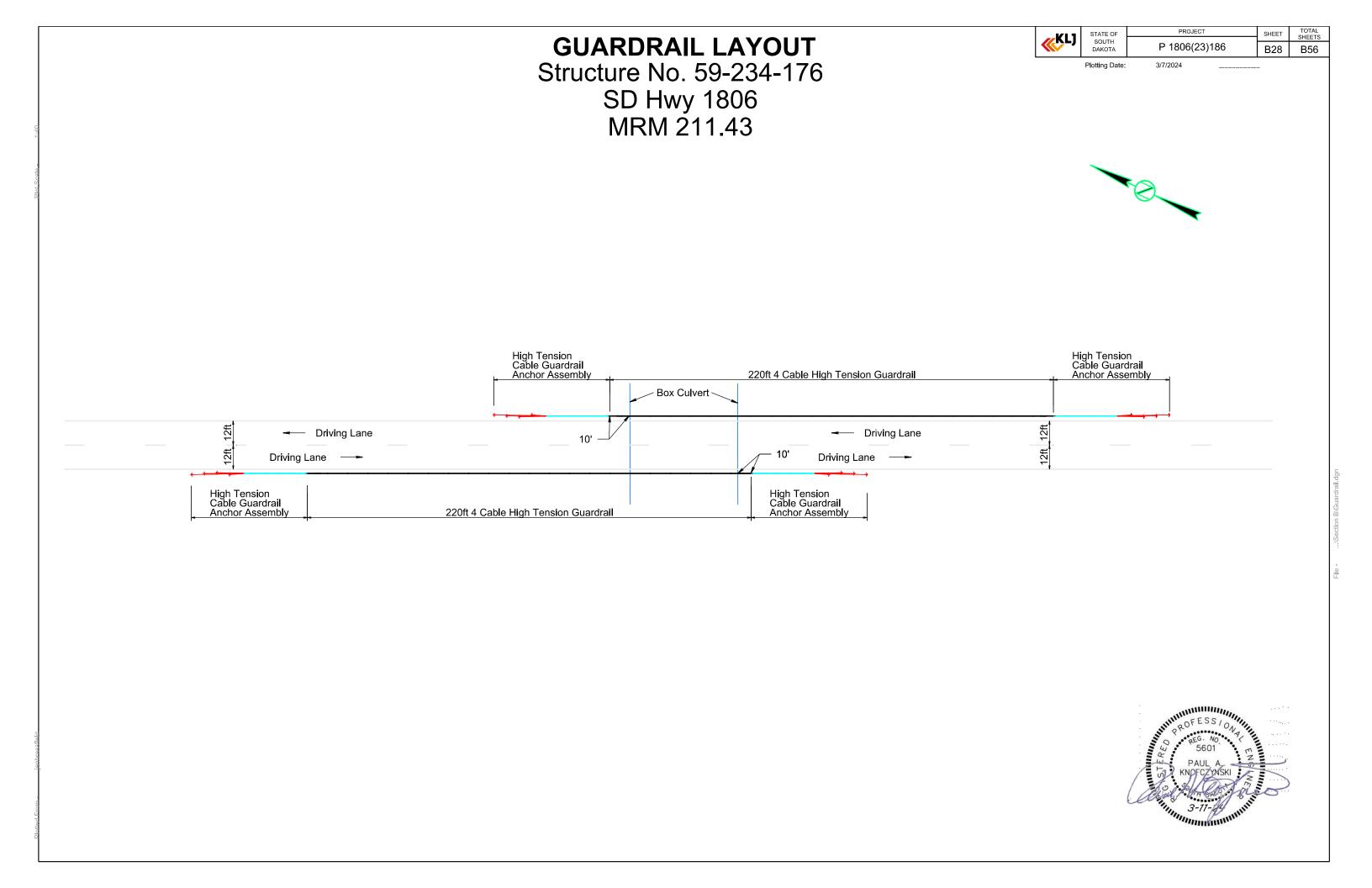


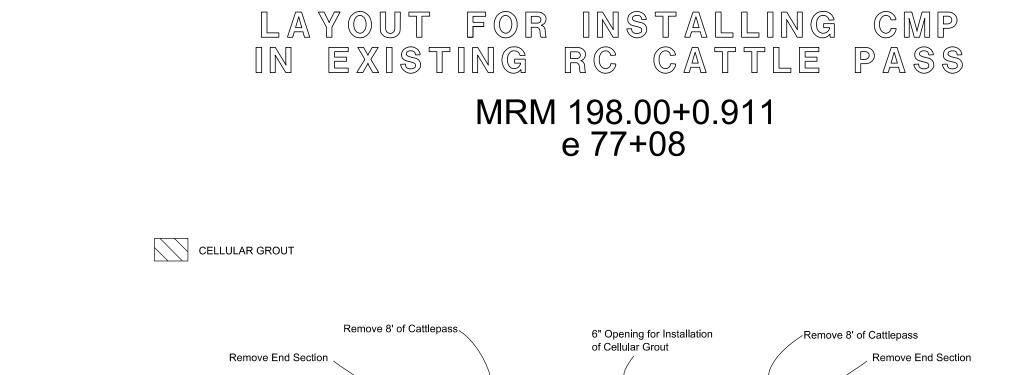


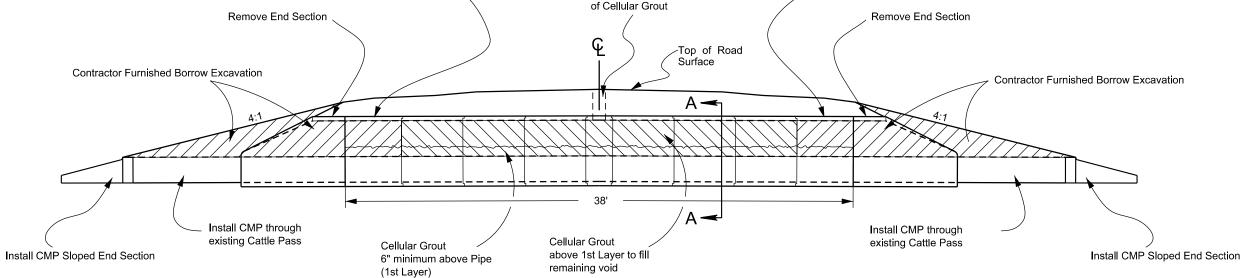

...\Construction sheets\d000.dt

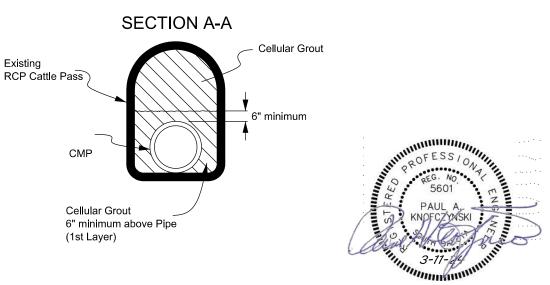




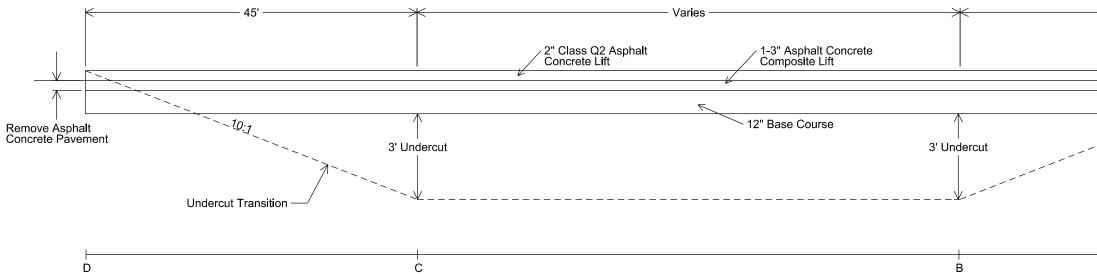




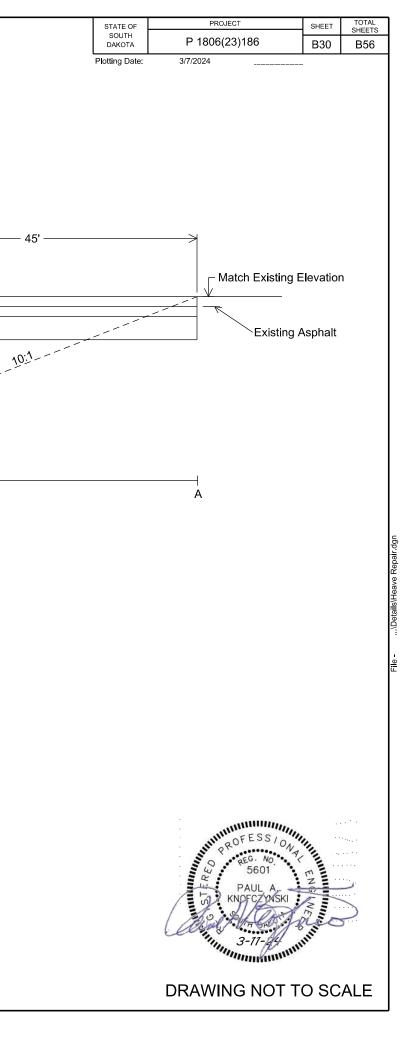


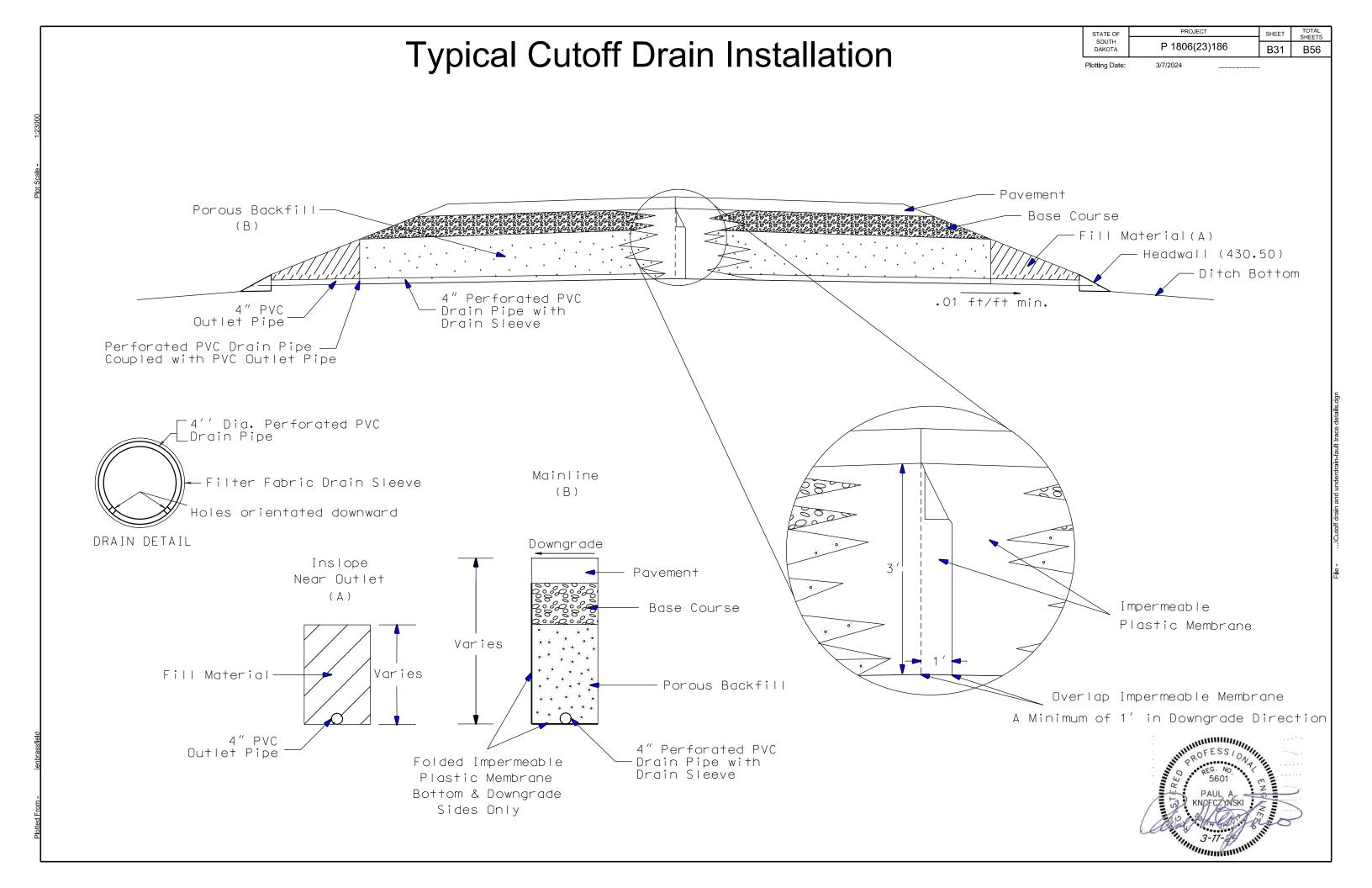


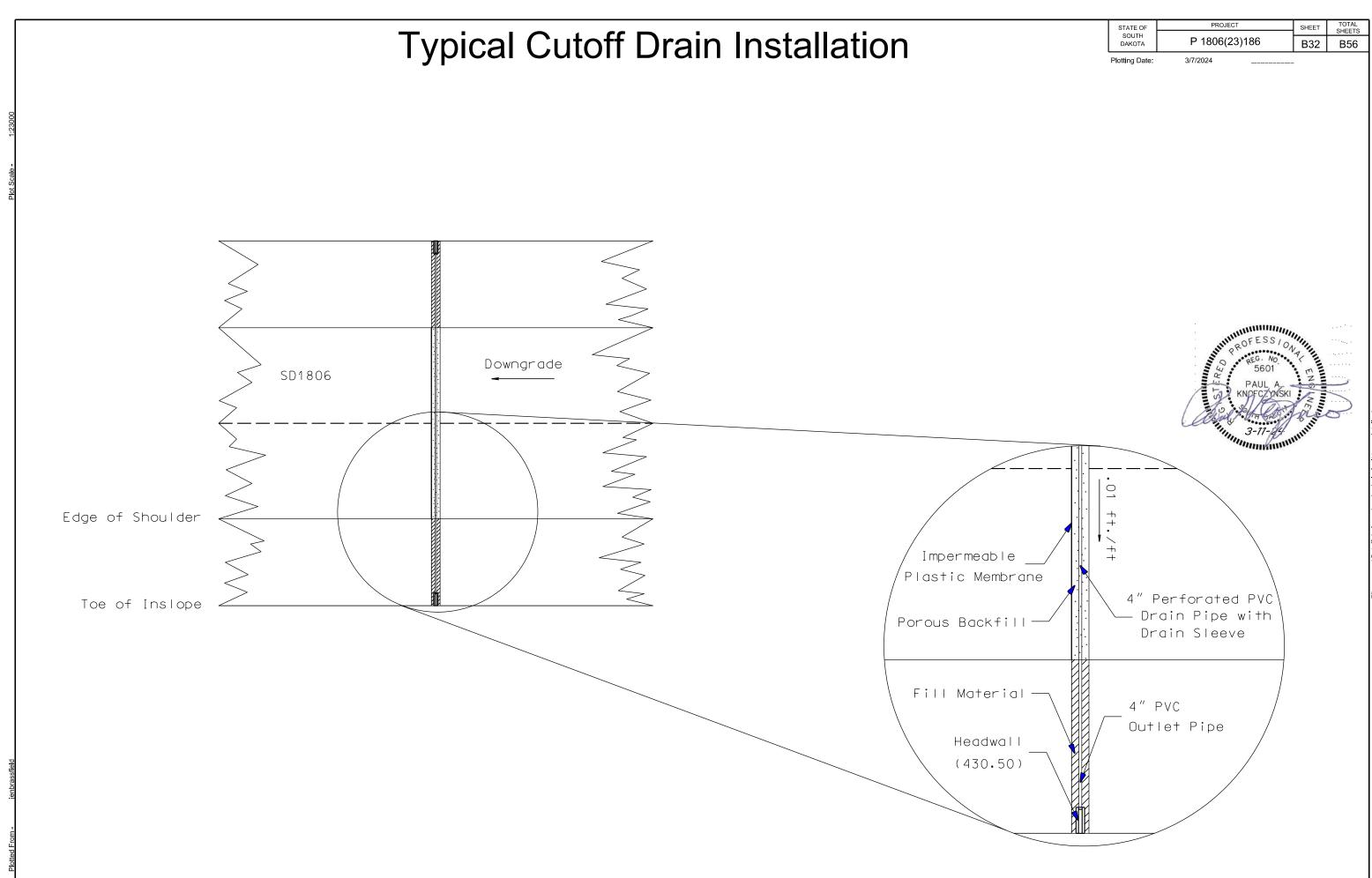
- Contractor will match the existing roadway inslope to the satisfaction of the Engineer.

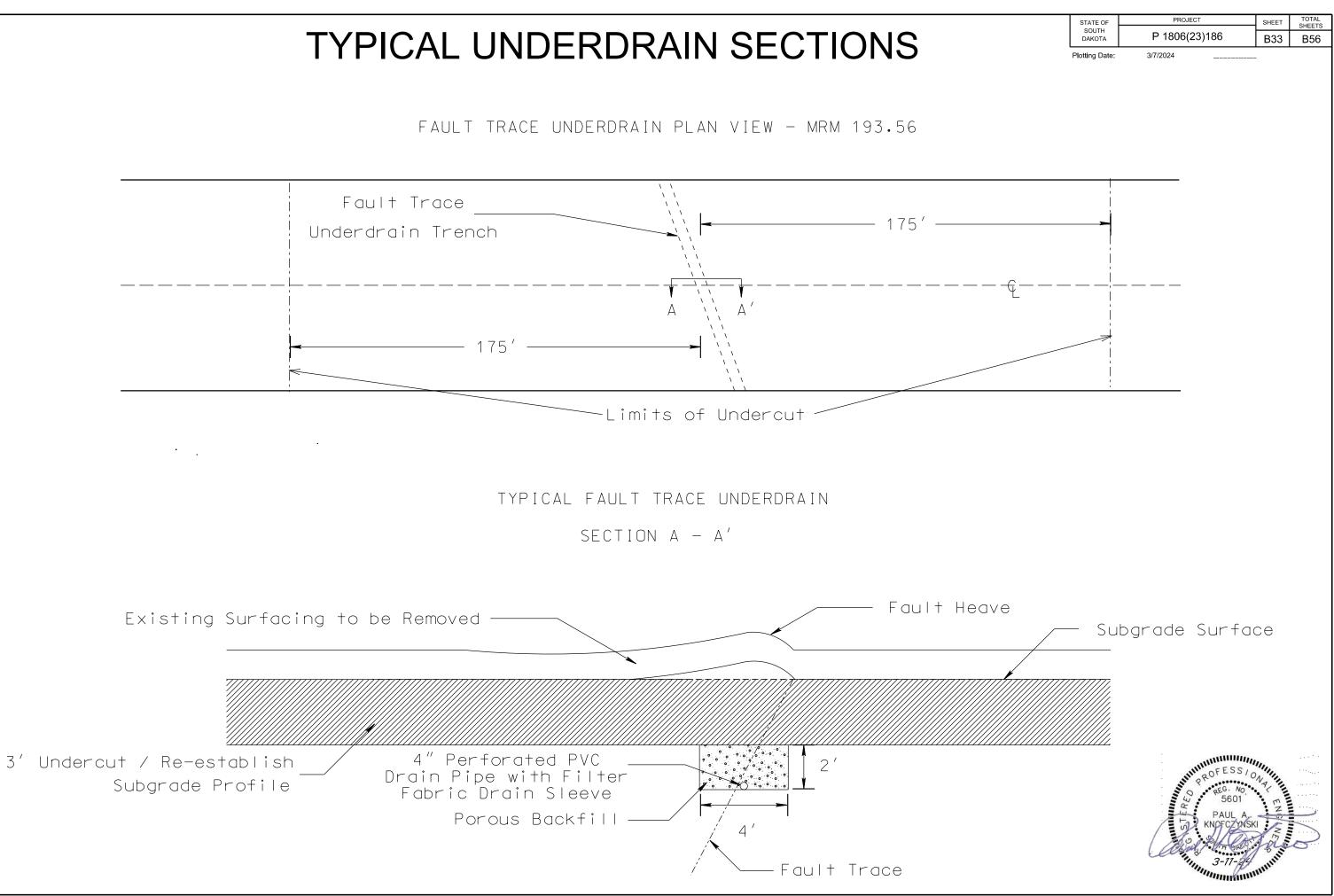

- Refer to plan notes for placing pipe and plugging the remaining void throughout the cattle pass.

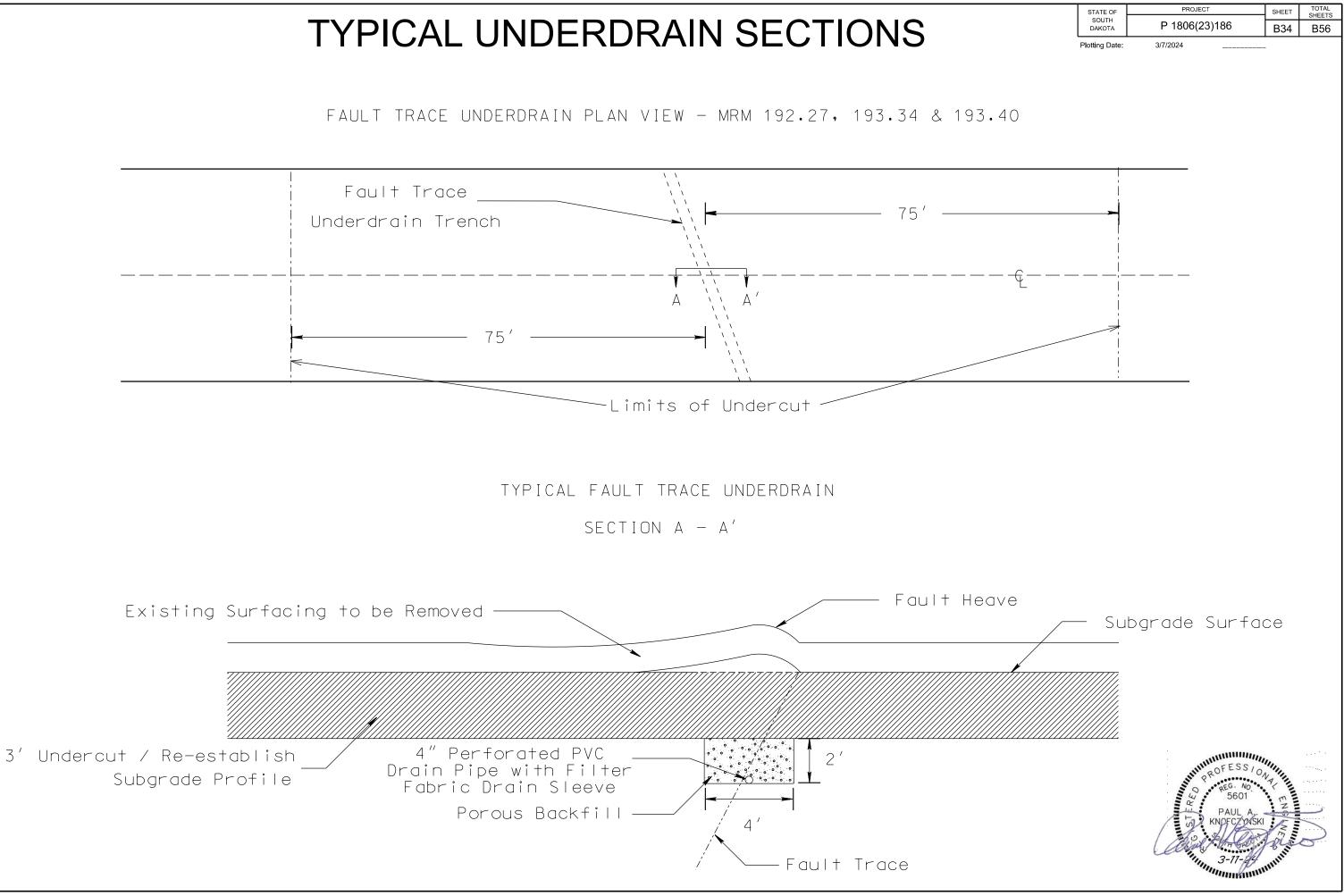
- Refer to the plans for quantities.

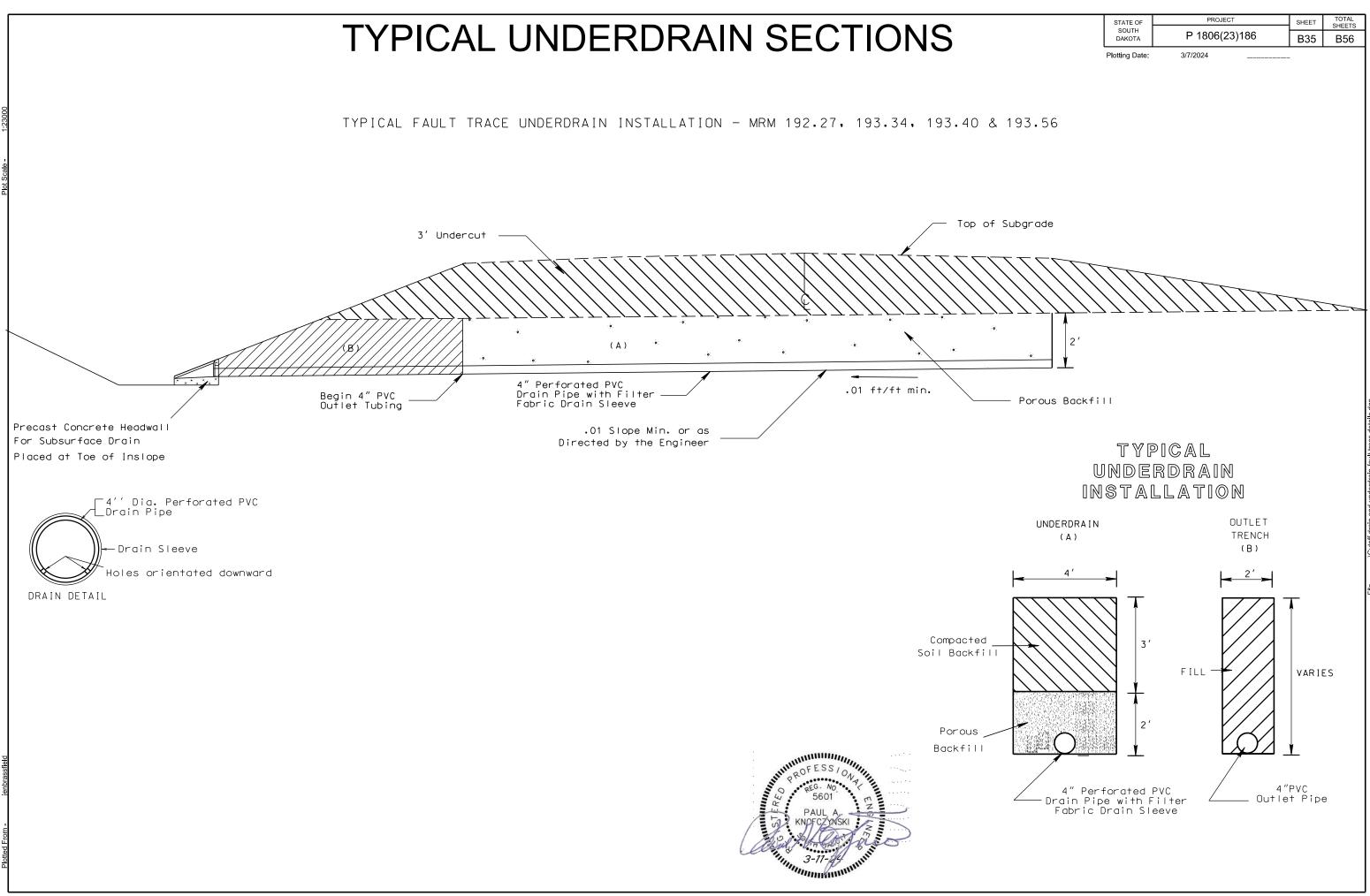

NOTE:


STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B29	B56
Plotting Date:	3/7/2024 Revised By:		

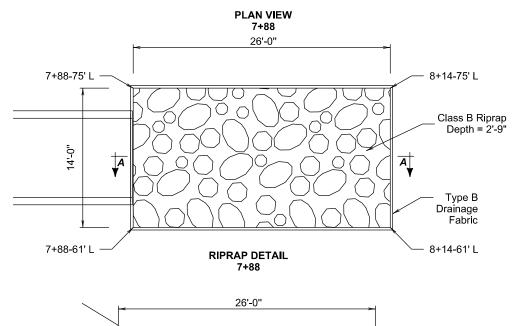

FAULT-HEAVE REPAIR

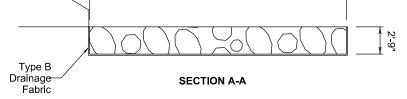

Heave Repair							
MRM		MRM	Α	В	С	D	
192.00+0.256	to	192.00+0.284	d 33+45	d 33+90	d 35+38	d 35+83	
193.00+0.326	to	193.00+0.354	d 90+05	d 90+50	d 95+04	d 95+49	
193.00+0.386	to	193.00+0.414	d 100+34	d 100+79	d 104+23	d 104+68	

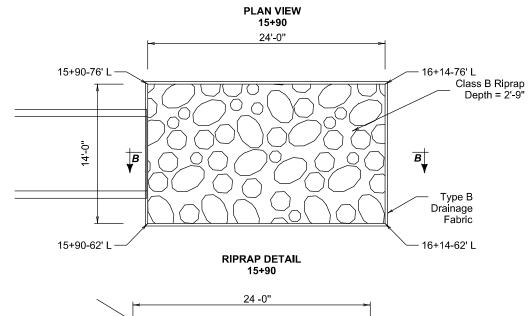


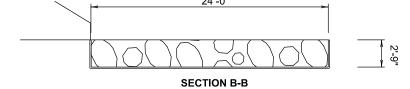


...\Cutoff drain and underdrain-fault trace details dgn

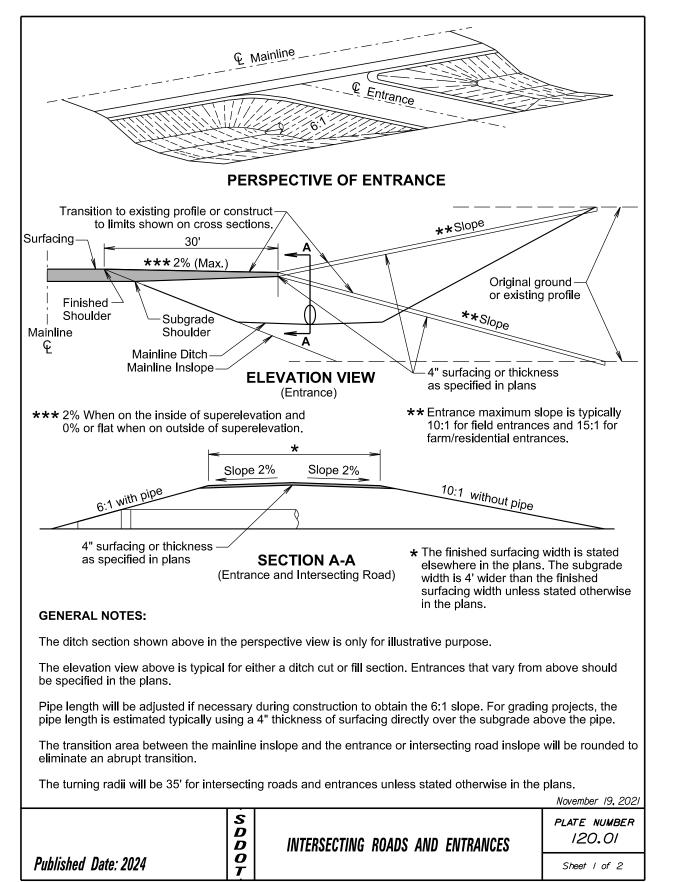


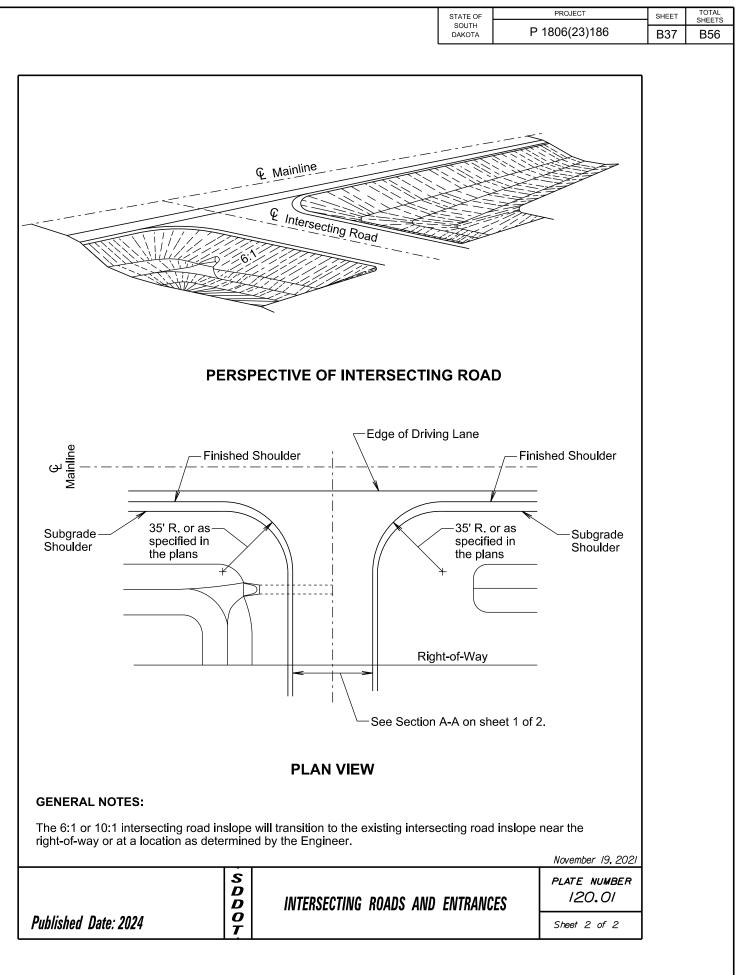


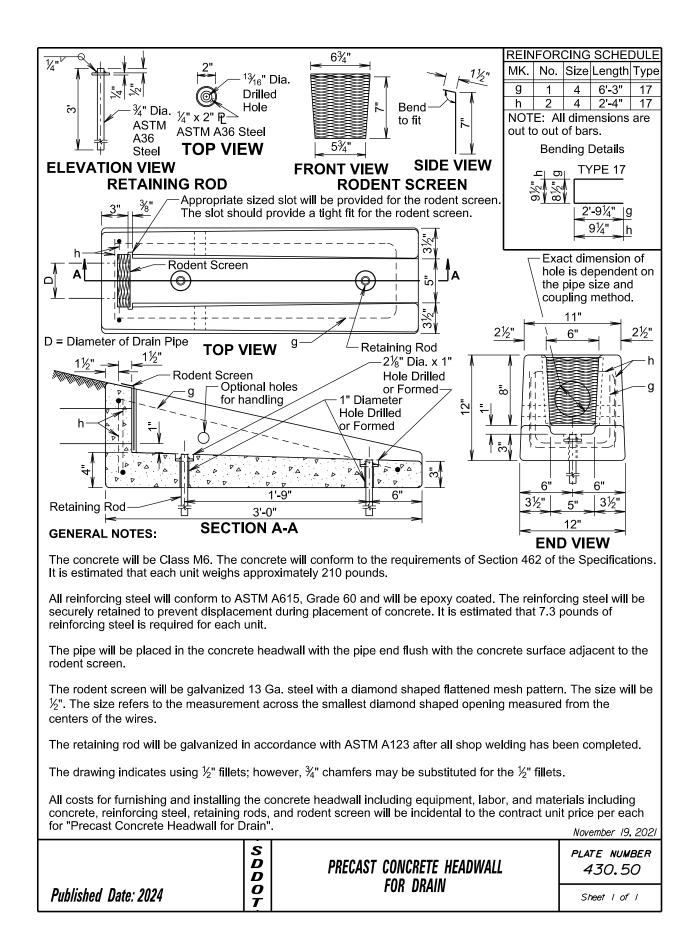




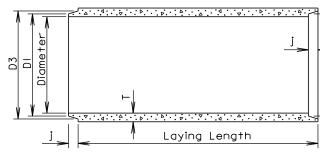
RIPRAP DETAILS







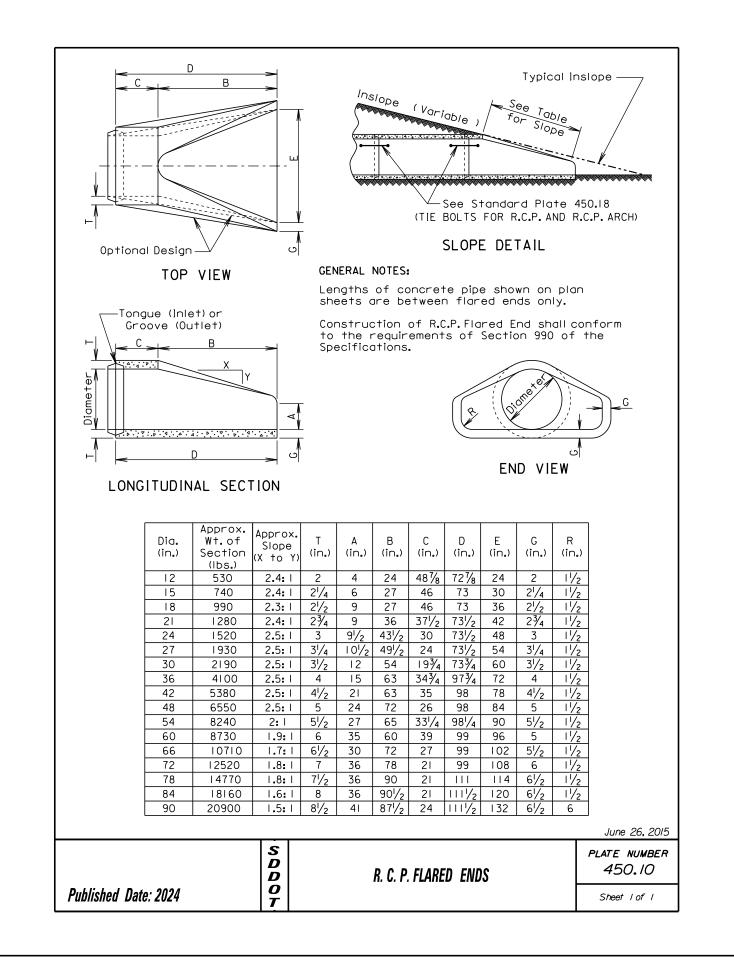
"KI 1	STATE OF	PROJECT	SHEET	TOTAL SHEETS
(()	SOUTH DAKOTA	P 1806(23)186	B36	B56



TOLERANCES

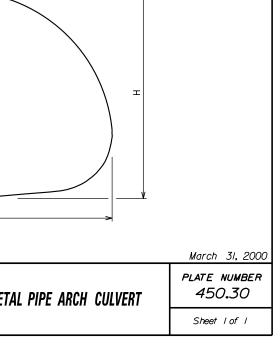
Diameter: ±1 Diameters a Length of

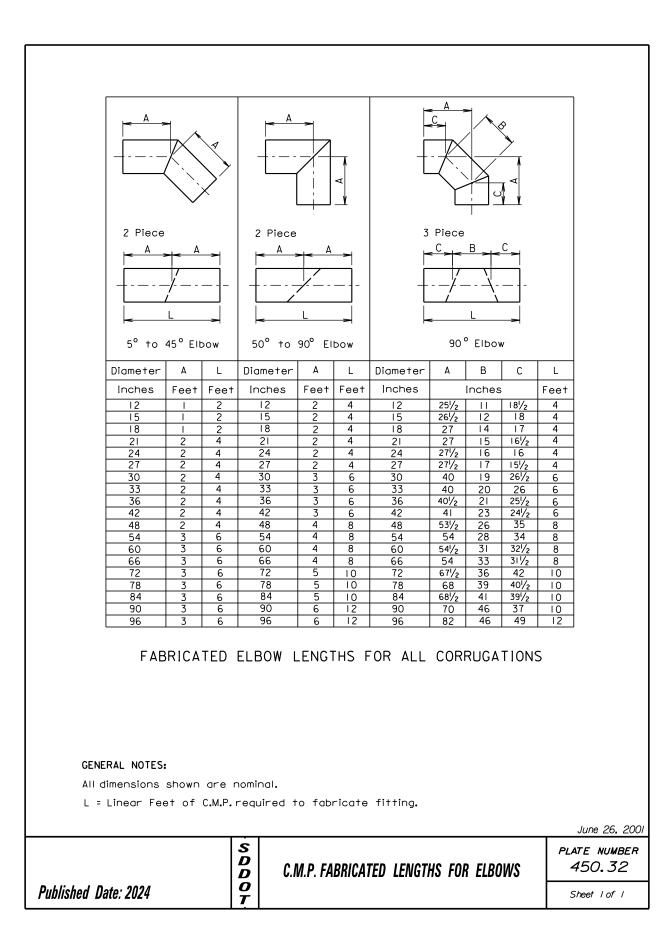
Wall thicknes Laying lengt

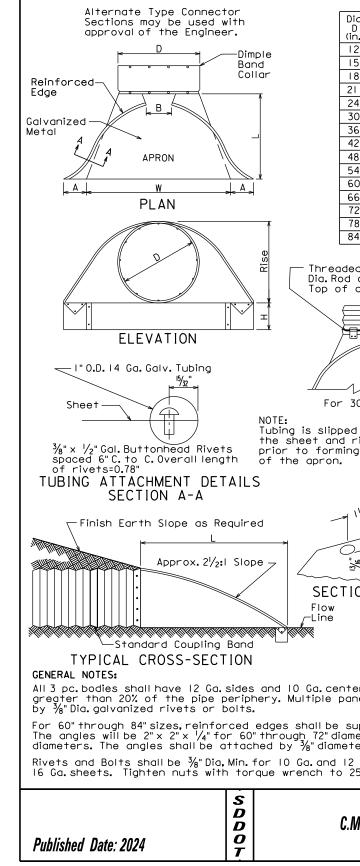

GENERAL NOT

Construction Section 990

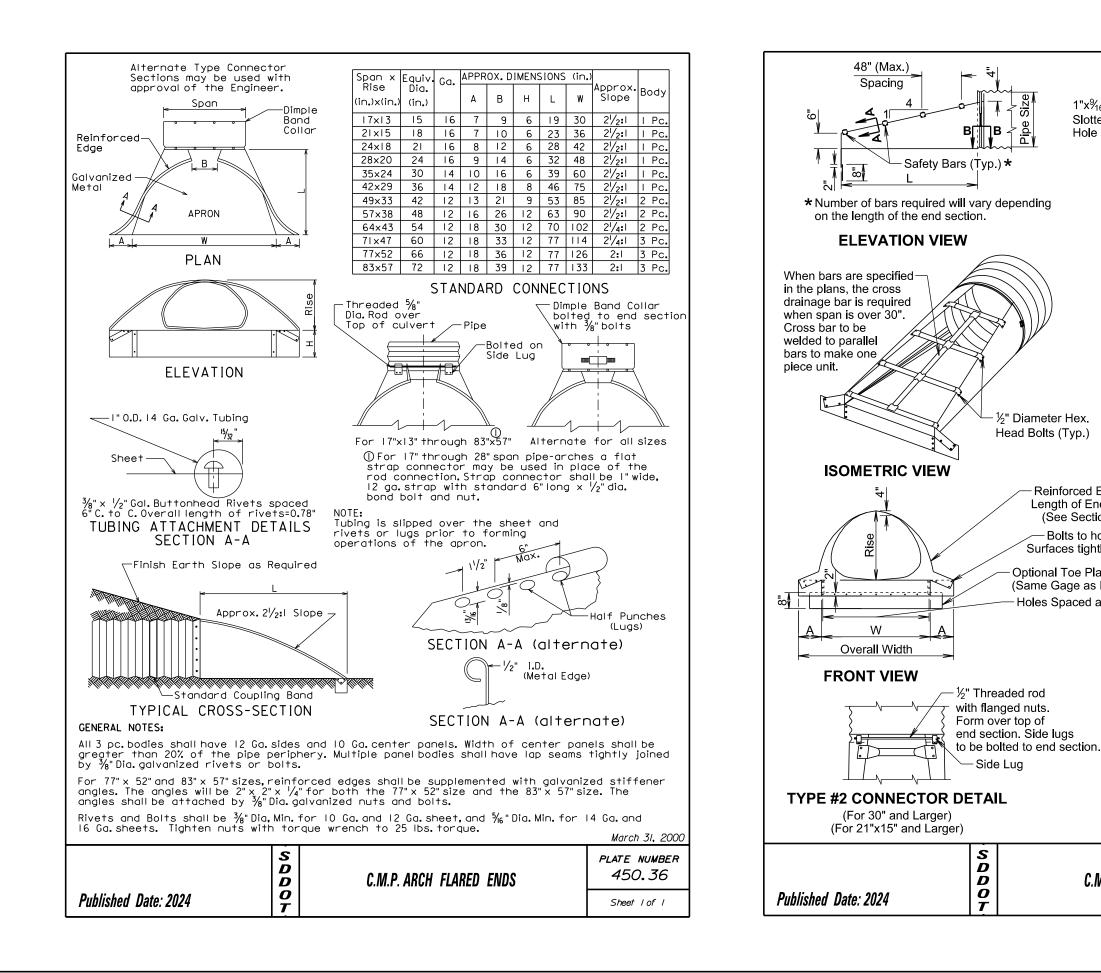
Not more th of any culv the require

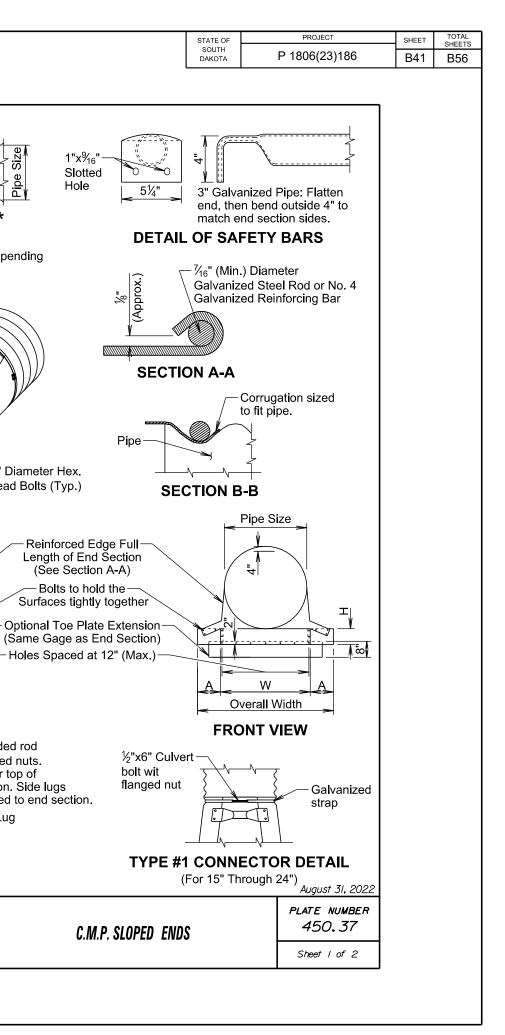

							STAT	E OF	PROJECT
							SOL	лн	P 1806(23)186
E	NSION	S							
r	24" [Dia.or I	ess and	±1% or	⅔" whic	hever is	s more	for 27"	Dia.or greater.
+	s: ±	16" for	30" Dia. c	or less	and <u>+</u> ½	a"for 36	5"or gr	eater.	
	j): ± 1/2	•	o dociar	ТБУЛ	noro th	70 5% or	- 3/, "	ichovor	- is greater.
			un by m			JI J/ U	716 • WI	lichever	is greater.
			2		. 2				
4		•••••••••••••••••••••••••••••••••••••••	· · · · · · · · · · · · · · · · · · ·	· · · Þ · · . Þ · ·		T T			
						A 1			
				_	j > <				ter
						D4		/// ×	one
	μ					W	~		
4		··· ^Δ ··· Ρ···		· · · · · · · ·	<u></u>	<u>¥ ¥</u>			
	Υ	Layir	ig Lengt	h	>				
		GITUDI	NAL SE					END) VIEW
	2011	011001							
							_		
		shall c cificat		to the	require	ments o	+		
					• • •				
						ed near y to se		nds	
		culver				J			
Γ	D:	Approx	- т		DI	D2	D.7	D.4	
	Diam. (in.)	Wt./Ft.	T (in.)	J (in.)	DI (in.)	D2 (in.)	D3 (in.)	D4 (in.)	
		(ID.) 92	2	13/	171/	1 7 5 /	177/		
	10		2	³ ⁄4 2	3 /4 6 /2	13 <u>%</u> 167/8	3½ 7¼	4 /4 7 ⁵ /8	
	12		21/4	21/4	195/8	20	203/8	203/4	
	2 5 8	127 168	2 ¹ / ₄ 2 ¹ / ₂	274		23 ¹ /4	233⁄4		
	15 18 21	127 168 214	2 ¹ / ₂ 2 ³ / ₄	21/2	227/8			24 ¹ /8	
	15 18 21 24	127 168 214 265	2 ¹ / ₂ 2 ³ / ₄ 3	2 ¹ / ₂ 2 ³ / ₄	26	263/8	27	24 ¹ /8 27 ³ /8	
	15 18 21 24 27	127 168 214 265 322	$ \begin{array}{c} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{4} \end{array} $	2 ¹ / ₂ 2 ³ / ₄ 3	26 29 ¹ /4	26 <u>3/8</u> 295/8	27 30 ¹ /4	24 ¹ /8 27 ³ /8 30 ⁵ /8	
	15 18 21 24 27 30 36	127 168 214 265 322 384 524	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{4} \\ 3^{1}/_{2} \\ 4 \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{4} \\ 3^{3}/_{4} \\ \end{array} $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄	27 30 ¹ / ₄ 33 ¹ / ₂ 40	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂	
	15 18 21 24 27 30 36 42	127 168 214 265 322 384 524 685	$ \begin{array}{c} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{4} \\ 3^{1}/_{2} \\ 4 \\ 4^{1}/_{2} \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{4} \\ 3^{3}/_{4} \\ 4 \\ \end{array} $	26 29 ¹ /4 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47	
	15 18 21 24 27 30 36 42 48	127 168 214 265 322 384 524 685 867	$ \begin{array}{c} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{4} \\ 3^{1}/_{2} \\ 4 \\ 4^{1}/_{2} \\ 5 \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{4} \\ 3^{3}/_{4} \\ 4 \\ 4^{1}/_{2} \end{array} $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈ 52	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47 53 ¹ / ₂	
	15 18 21 24 27 30 36 42	127 168 214 265 322 384 524 685	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3\frac{3}{4} \\ \frac{3}{2} \\ 4 \\ \frac{4}{2} \\ 5 \\ 5\frac{1}{2} \\ 6 \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{4} \\ 3^{3}/_{4} \\ 4 \\ \end{array} $	26 29 ¹ /4 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈ 52 58 ³ / ₈ 64 ³ / ₄	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47	
	15 18 21 24 27 30 36 42 48 54 60 66	127 168 214 265 322 384 524 685 867 1070 1296 1542	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{2} \\ 4 \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ \end{array} $	$ \frac{2\frac{1}{2}}{3\frac{3}{4}} \frac{3}{3\frac{1}{4}} \frac{3}{4\frac{1}{2}} \frac{4}{4\frac{1}{2}} \frac{4\frac{1}{2}}{5\frac{5\frac{1}{2}}{5\frac{1}{2}}} $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈ 52 58 ³ / ₈ 64 ³ / ₄ 71 ¹ / ₈	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47 53 ¹ / ₂ 59 ⁷ / ₈ 66 ¹ / ₂ 73	
	15 18 21 24 27 30 36 42 48 54 60 66 72	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810	$ \begin{array}{c} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3^{1}/_{2} \\ 4 \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ 7 \\ \end{array} $	$ \begin{array}{r} 2 \frac{1}{2} \\ 2 \frac{3}{4} \\ 3 \\ 3 \frac{1}{4} \\ 4 \\ 4 \frac{1}{2} \\ 4 \frac{1}{2} \\ 5 \\ 5 \frac{1}{2} \\ 6 \end{array} $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈ 52 58 ³ / ₈ 64 ³ / ₄ 71 ¹ / ₈ 77 ¹ / ₂	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47 53 ¹ / ₂ 59 ⁷ / ₈ 66 ¹ / ₂ 73 79 ¹ / ₂	
	15 18 21 24 27 30 36 42 48 54 60 66 72 78	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810 2098	$ \begin{array}{r} 2 \frac{1}{2} \\ 2 \frac{3}{4} \\ 3 \\ 3 \frac{1}{2} \\ 4 \\ 4 \frac{1}{2} \\ 5 \\ 5 \frac{1}{2} \\ 6 \\ 6 \frac{1}{2} \\ 7 \\ 7 \frac{1}{2} \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{3}/_{4} \\ 4 \\ 4^{1}/_{2} \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ \end{array} $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77 83 ³ / ₈	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈ 52 58 ³ / ₈ 64 ³ / ₄ 71 ¹ / ₈ 77 ¹ / ₂ 83 ⁷ / ₈	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79 85 ⁵ / ₈	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47 53 ¹ / ₂ 59 ⁷ / ₈ 66 ¹ / ₂ 73 79 ¹ / ₂ 86 ¹ / ₈	
	15 18 21 24 27 30 36 42 48 54 60 66 72	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810	$ \begin{array}{c} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3^{1}/_{2} \\ 4 \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ 7 \\ \end{array} $	$ \begin{array}{r} 2 \frac{1}{2} \\ 2 \frac{3}{4} \\ 3 \\ 3 \frac{1}{4} \\ 4 \\ 4 \frac{1}{2} \\ 4 \frac{1}{2} \\ 5 \\ 5 \frac{1}{2} \\ 6 \end{array} $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈ 52 58 ³ / ₈ 64 ³ / ₄ 71 ¹ / ₈ 77 ¹ / ₂	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47 53 ¹ / ₂ 59 ⁷ / ₈ 66 ¹ / ₂ 73 79 ¹ / ₂	
	15 18 21 24 27 30 36 42 48 54 60 66 72 78 84 90 96	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810 2098 2410 2740 2950	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3 \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \\ 5 \\ 5\frac{1}{2} \\ 6 \\ 6\frac{1}{2} \\ 7 \\ 7\frac{1}{2} \\ 8 \\ 8\frac{1}{2} \\ 9 \\ \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{3}/_{4} \\ 4 \\ 4^{1}/_{2} \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77 83 ³ / ₈ 89 ³ / ₄ 95 ³ / ₄ 102 ¹ / ₈	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈ 52 58 ³ / ₈ 64 ³ / ₄ 71 ¹ / ₈ 77 ¹ / ₂ 83 ⁷ / ₈ 90 ¹ / ₄ 96 ¹ / ₄ 102 ⁵ / ₈	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79 85 ⁵ / ₈ 92 ¹ / ₈ 98 ¹ / ₈ 104 ¹ / ₂	241/8 273/8 305/8 337/8 401/2 47 531/2 597/8 661/2 73 791/2 861/8 925/8 985/8 105	
	15 18 21 24 27 30 36 42 48 54 60 66 72 78 84 90 96 102	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810 2098 2410 2740 2950 3075	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3 \\ 3\frac{1}{4} \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \\ 5 \\ 5\frac{1}{2} \\ 6 \\ 6\frac{1}{2} \\ 7 \\ 7\frac{1}{2} \\ 8 \\ 8\frac{1}{2} \\ 9 \\ 9\frac{1}{2} \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{3}/_{4} \\ 4 \\ 4^{1}/_{2} \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ 7 \\ 7 \\ 7 \\ 7 \\ 7^{1}/_{2} \\ \end{array} $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77 83 ³ / ₈ 89 ³ / ₄ 95 ³ / ₄ 102 ¹ / ₈ 109	263/8 295/8 323/4 455/8 52 583/8 643/4 711/8 771/2 837/8 901/4 961/4 1025/8 1091/2	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79 85 ⁵ / ₈ 92 ¹ / ₈ 92 ¹ / ₈ 98 ¹ / ₈ 104 ¹ / ₂ 111 ¹ / ₂	241/8 273/8 305/8 337/8 401/2 47 531/2 597/8 661/2 73 791/2 861/8 925/8 985/8 105 112	
	15 18 21 24 27 30 36 42 48 54 60 66 72 78 84 90 96	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810 2098 2410 2740 2950	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3 \\ 3\frac{1}{2} \\ 4 \\ 4\frac{1}{2} \\ 5 \\ 5\frac{1}{2} \\ 6 \\ 6\frac{1}{2} \\ 7 \\ 7\frac{1}{2} \\ 8 \\ 8\frac{1}{2} \\ 9 \\ \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{3}/_{4} \\ 4 \\ 4^{1}/_{2} \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77 83 ³ / ₈ 89 ³ / ₄ 95 ³ / ₄ 102 ¹ / ₈	26 ³ / ₈ 29 ⁵ / ₈ 32 ³ / ₄ 39 ¹ / ₄ 45 ⁵ / ₈ 52 58 ³ / ₈ 64 ³ / ₄ 71 ¹ / ₈ 77 ¹ / ₂ 83 ⁷ / ₈ 90 ¹ / ₄ 96 ¹ / ₄ 102 ⁵ / ₈	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79 85 ⁵ / ₈ 92 ¹ / ₈ 98 ¹ / ₈ 104 ¹ / ₂	241/8 273/8 305/8 337/8 401/2 47 531/2 597/8 661/2 73 791/2 861/8 925/8 985/8 105	
	15 18 21 24 27 30 36 42 48 54 60 66 72 78 84 90 96 102	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810 2098 2410 2740 2950 3075 3870	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3\\ 3\frac{1}{4} \\ 3\frac{1}{2} \\ 4\\ 4\frac{1}{2} \\ 5\\ 5\frac{1}{2} \\ 6\\ 6\frac{1}{2} \\ 7\\ 7\frac{1}{2} \\ 8\\ 8\frac{1}{2} \\ 9\\ 9\frac{1}{2} \\ 10 \end{array} $	$ \begin{array}{r} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{3}/_{4} \\ 4 \\ 4^{1}/_{2} \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ 7 \\ 7 \\ 7 \\ 7 \\ 7^{1}/_{2} \\ \end{array} $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77 83 ³ / ₈ 89 ³ / ₄ 95 ³ / ₄ 102 ¹ / ₈ 109	263/8 295/8 323/4 455/8 52 583/8 643/4 711/8 771/2 837/8 901/4 961/4 1025/8 1091/2	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79 85 ⁵ / ₈ 92 ¹ / ₈ 92 ¹ / ₈ 98 ¹ / ₈ 104 ¹ / ₂ 111 ¹ / ₂	241/8 273/8 305/8 337/8 401/2 47 531/2 597/8 661/2 73 791/2 861/8 925/8 985/8 105 112	
	15 18 21 24 27 30 36 42 48 54 60 66 72 78 84 90 96 102	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810 2098 2410 2740 2950 3075 3870	$ \begin{array}{c} 2^{1}/_{2} \\ 2^{3}/_{4} \\ 3 \\ 3^{1}/_{2} \\ 4 \\ 4^{1}/_{2} \\ 5 \\ 5^{1}/_{2} \\ 6 \\ 6^{1}/_{2} \\ 7 \\ 7^{1}/_{2} \\ 8 \\ 8^{1}/_{2} \\ 9 \\ 9^{1}/_{2} \\ 10 \\ \end{array} $	$ \frac{2^{1}/_{2}}{2^{3}/_{4}} \\ \frac{3}{3^{3}/_{4}} \\ \frac{4}{4^{1}/_{2}} \\ \frac{4^{1}/_{2}}{5^{5}} \\ \frac{5^{1}/_{2}}{5^{6}} \\ \frac{6^{1}/_{2}}{7} \\ \frac{7}{7} \\ \frac{7^{1}/_{2}}{7^{1}/_{2}} \\ $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77 83 ³ / ₈ 89 ³ / ₄ 95 ³ / ₄ 102 ¹ / ₈ 109 115 ¹ / ₂	263/8 295/8 323/4 455/8 52 583/8 643/4 711/8 771/2 837/8 901/4 961/4 1025/8 1091/2 116	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79 85 ⁵ / ₈ 92 ¹ / ₈ 92 ¹ / ₈ 98 ¹ / ₈ 104 ¹ / ₂ 111 ¹ / ₂ 118	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47 53 ¹ / ₂ 59 ⁷ / ₈ 66 ¹ / ₂ 73 79 ¹ / ₂ 86 ¹ / ₈ 92 ⁵ / ₈ 92 ⁵ / ₈ 98 ⁵ / ₈ 105 112 118 ¹ / ₂	PLATE NUMBER
	15 18 21 24 27 30 36 42 48 54 60 66 72 78 84 90 96 102	127 168 214 265 322 384 524 685 867 1070 1296 1542 1810 2098 2410 2740 2950 3075 3870	$ \begin{array}{c} 2\frac{1}{2} \\ 2\frac{3}{4} \\ 3\\ 3\frac{1}{4} \\ 3\frac{1}{2} \\ 4\\ 4\frac{1}{2} \\ 5\\ 5\frac{1}{2} \\ 6\\ 6\frac{1}{2} \\ 7\\ 7\frac{1}{2} \\ 8\\ 8\frac{1}{2} \\ 9\\ 9\frac{1}{2} \\ 10 \end{array} $	$ \frac{2^{1}/_{2}}{2^{3}/_{4}} \\ \frac{3}{3^{3}/_{4}} \\ \frac{4}{4^{1}/_{2}} \\ \frac{4^{1}/_{2}}{5^{5}} \\ \frac{5^{1}/_{2}}{5^{6}} \\ \frac{6^{1}/_{2}}{7} \\ \frac{7}{7} \\ \frac{7^{1}/_{2}}{7^{1}/_{2}} \\ $	26 29 ¹ / ₄ 32 ³ / ₈ 38 ³ / ₄ 45 ¹ / ₈ 51 ¹ / ₂ 57 ⁷ / ₈ 64 ¹ / ₄ 70 ⁵ / ₈ 77 83 ³ / ₈ 89 ³ / ₄ 95 ³ / ₄ 102 ¹ / ₈ 109 115 ¹ / ₂	263/8 295/8 323/4 455/8 52 583/8 643/4 711/8 771/2 837/8 901/4 961/4 1025/8 1091/2	27 30 ¹ / ₄ 33 ¹ / ₂ 40 46 ¹ / ₂ 53 59 ³ / ₈ 66 72 ¹ / ₂ 79 85 ⁵ / ₈ 92 ¹ / ₈ 92 ¹ / ₈ 98 ¹ / ₈ 104 ¹ / ₂ 111 ¹ / ₂ 118	24 ¹ / ₈ 27 ³ / ₈ 30 ⁵ / ₈ 33 ⁷ / ₈ 40 ¹ / ₂ 47 53 ¹ / ₂ 59 ⁷ / ₈ 66 ¹ / ₂ 73 79 ¹ / ₂ 86 ¹ / ₈ 92 ⁵ / ₈ 92 ⁵ / ₈ 98 ⁵ / ₈ 105 112 118 ¹ / ₂	June 26, 2015 PLATE NUMBER 450.01


Published Date: 2024	REINFOR



		2 ² / ₃ " × ¹ /	2" CORRU	GATIONS	3" X I"	CORRUG	ATIONS
	* Dia. (in.)	S Span (in.)	H Rise (in.)	Area (Sq.Ft.)	S Span (in.)	H Rise (in.)	Area (Sq.Ft.)
	15	17	13	1.1			
	18	21	15	۱.6			
	21	24	18	2.2			
	24	28	20	2.8			
	30	35	24	4.4			
	36	42	29	6.4	40	31	7.0
	42	49	33	8.7	46	36	9.4
	48	57	38	11.4	53	41	12.3
	54	64	43	14.3	60	46	15.6
	60	71	47	17.6	66	51	19.3
	66	77	52	21.3	73	55	23.2
	72	83	57	25.3	81	59	27.4
	78				87	63	32.1
	84				95	67	37.0
	90				103	71	42.4
	96				112	75	48.0
	102				117	79	54.2
	108				128	83	60.8
	4				137	87	67.4
	120				I 42	91	74.5
* Equivalent of GENERAL NOTE: All dimensions				S			
Published Date.	· 2024		S D D C O T	RRUGATED	METAL PIP	E ARCH (GULVERT


STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B39	B56



				STATE	OF		PRO	JECT		SHEET	TOTAL
				SOUT	н		P 1806	(23)18	6	B40	SHEETS B56
			L	5,110				. ,		010	000
								1			
)ia. D	Ga.			SIONS H			Approx. Slope	Body			
in.) 12	16					W 24	2 ¹ /2 : 1				
15	16	6	6	6 6	21 26	24 30	2/2:1 2 /2:1	I Pc.			
8	16	8	10	6	31	36	2 ¹ /2:1	I Pc.			
21	16	9	12	6	36	42	2 ¹ /2:1	I Pc.			
24 30	16	10	13 16	6 8	41 46	48 60	2 /2:1 2 /2:1	I Pc.			
36	14	14	19	9	51	72	21/2:1	2 Pc.			
42	12	16	22	11	60	84	2 /2:1	2 Pc.			
18 ≂⊿	12	18	27	12	69 79	90	2 ¹ /4:1	2 Pc.			
54 50	12	18 18	30 33	12	78 84	102	2:1 ³ ⁄4:1	3 Pc. 3 Pc.			
66	12	18	36	12	87	120	11/2 : 1	3 Pc.			
72	12	18	39	12	87	126	/3:	3 Pc.			
78 34	12	18 18	42 45	12 12	87 87	132 138	/4: /6:	3 Pc. 3 Pc.			
								J 1 C.			
ed	5/8"	ANL			יואוע ר	ECTI - Dimp		d Colle	ar		
٥v	er Iver	+ ~ =	Pipe			boli	ble Band ted to n ¾"bol	end s	ection		
cu						w	1 78 00	13			
	÷	\equiv		oltec ide L		ľ		0			
	- 7					╞					
	- ¢	\longrightarrow	7								
			\mathscr{N}		//	/	Ì	Ń			
1		1		-		1	$ \longrightarrow $	1			
30"	thro	ugh	84"		AI+	erna	te for	all si	zes		
							Pipe-		rap-7		
	over ets	or li		Flat			,	/ BC			
		atior		Conne	ecto	r \		\equiv			
						2		$\overline{\boldsymbol{\lambda}}$			
		6"									
\'/2	•	MOX	/								
	1		نے ک	25		//	-1-+	-1			
×	0	$\neg Q$	\ '	\}	' F	or I	2" throu	ugh 24	l" only		
	` <mark>"</mark> %		\geq	Ł	Half	Puno	bes				
<u> </u>	~~				-	Lugs)					
ION	1 A-	-A (alt.	ern	ate))					
				C	٦.	1/2"	0				
				C			.U. al Edge)				
			~ ~ ~			ĺ.					
							(alte				
er Inel	pane bodi	es t	Nidth o ha	ve k	cent op se	er p eams	anels s tightly	hall b joine	e ed		
								-			
upp net	oleme ers	nteo and	t wit 21/2" \	h gal く 21/2	lvani " x'//	zed "for	stiffen 78" and	er an 84"	gles.		
ter	galv	/aniz	ed n	uts	and	bolts	5. 5.	~ '			
				⅔6 " Di	a. Mi	n.fo	- 14 Ga	and			
دی	105.1	orqu	JC.				/	larch 3	1, 2000		
							PLA	TE NU	MBER		
MP) FI A	RFN	END	S				450 . .			
		TEU	LIVU								
							S	heet I d	07 /		

				C.M.F						
Equiv.	(Incł	nes)	(Min.)	Thick.	Dim	ensi	ons (Inches)	L Dime	ensions
Dia. (Inch)	Span	Rise	Inch	Gage	A	н	W	Overall Width	Slope	Length (Inch)
18	21	15	.064	16	8	6	27	43	4:1	20
21	24	18	.064	16	8	6	30	46	4:1	32
24	28	20	.064	16	8	6	34	50	4:1	40
30	35	24	.079	14	12	9	41	65	4:1	56
36	42	29	.109	12	12	9	48	72	4:1	76
42	49	33	.109	12	16	12	55	87	4:1	92
48	57	38	.109	12	16	12	63	95	4:1	112
54	64	43	.109	12	16	12	70	102	4:1	132
60	71	47	.109	12	16	12	77	109	4:1	148
72	83	57	.109	12	16	12	89	121	4:1	188

	CIF	RCULA	R C	C.M	.P. \$	SLOPED E	NDS	
Pipe	(Min.)	Thick.	Dir	nen	sior	ns (Inches)	L Dime	ensions
Dia. (Inch)	Inch	Gage	А	Н	W	Overall Width	Slope	Length (Inch)
15	.064	16	8	6	21	37	4:1	20
18	.064	16	8	6	24	40	4:1	32
21	.064	16	8	6	27	43	4:1	44
24	.064	16	8	6	30	46	4:1	56
30	.109	12	12	9	36	60	4:1	80
36	.109	12	12	9	42	66	4:1	104
42	.109	12	16	12	48	80	4:1	128
48	.109	12	16	12	54	86	4:1	152
54	.109	12	16	12	60	92	4:1	176
60	.109	12	16	12	66	98	4:1	200

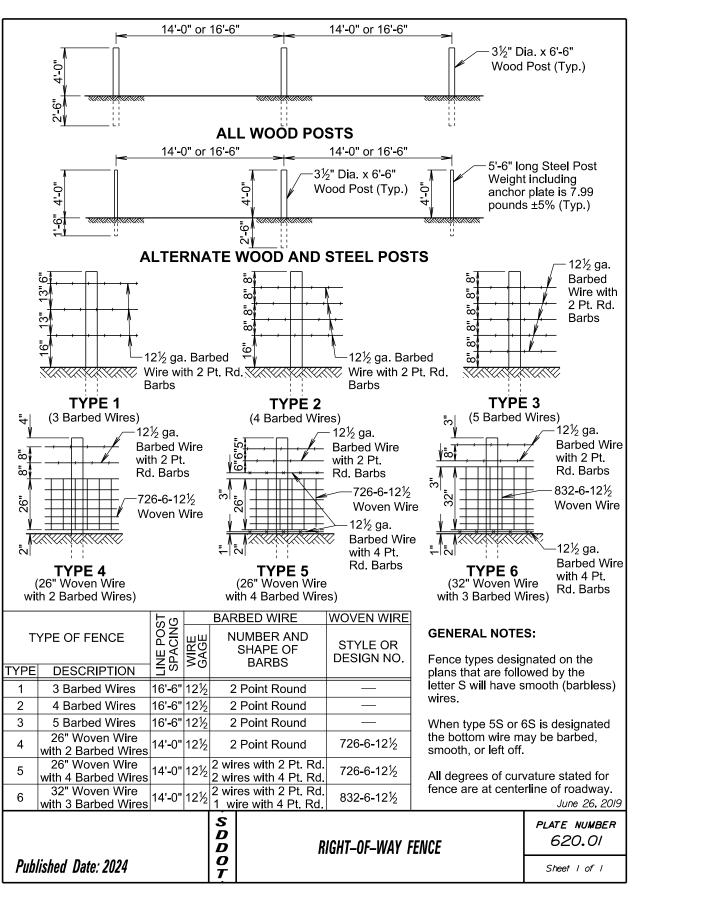
GENERAL NOTES:

Safety bars will be provided when specified in the plans.

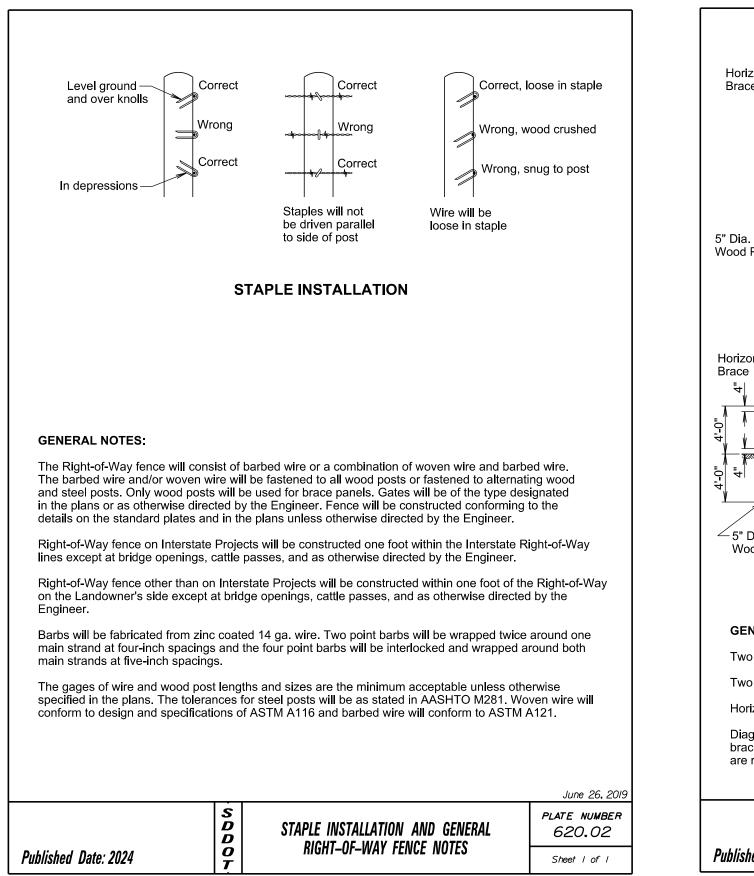
Sloped ends will be fabricated from galvanized steel and will conform to the requirements of the Specifications.

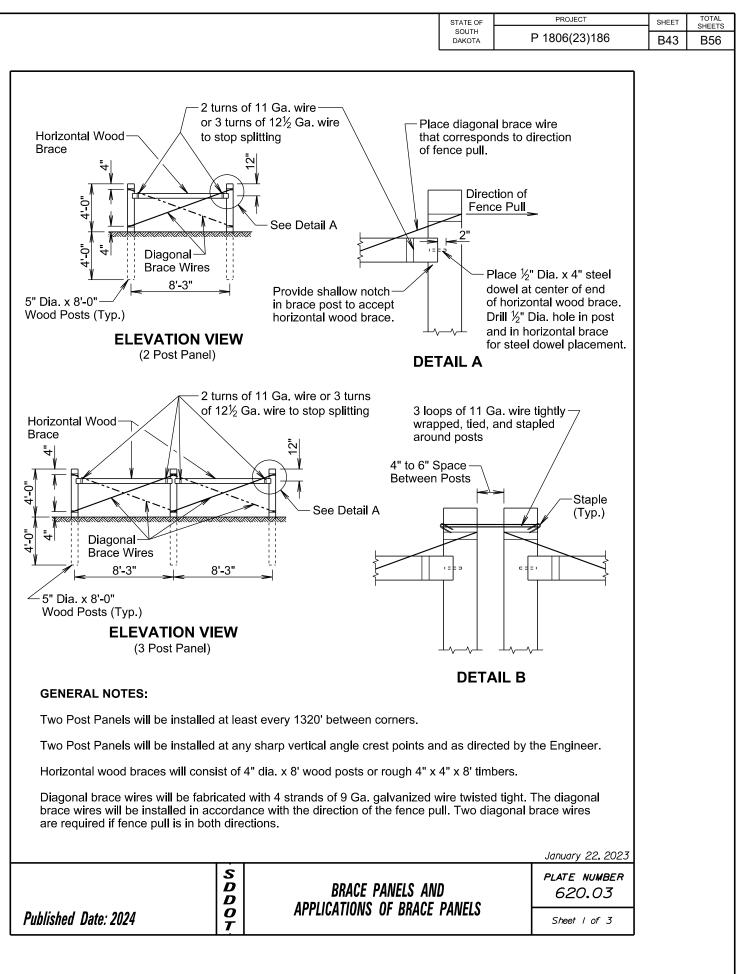
Safety bars will be fabricated from steel schedule 40 pipe in conformance with ASTM A53, grade B or HSS 3.5x.216 in conformance with ASTM A500, grade B.

Slotted holes for safety bar attachment will be provided for all end sections.

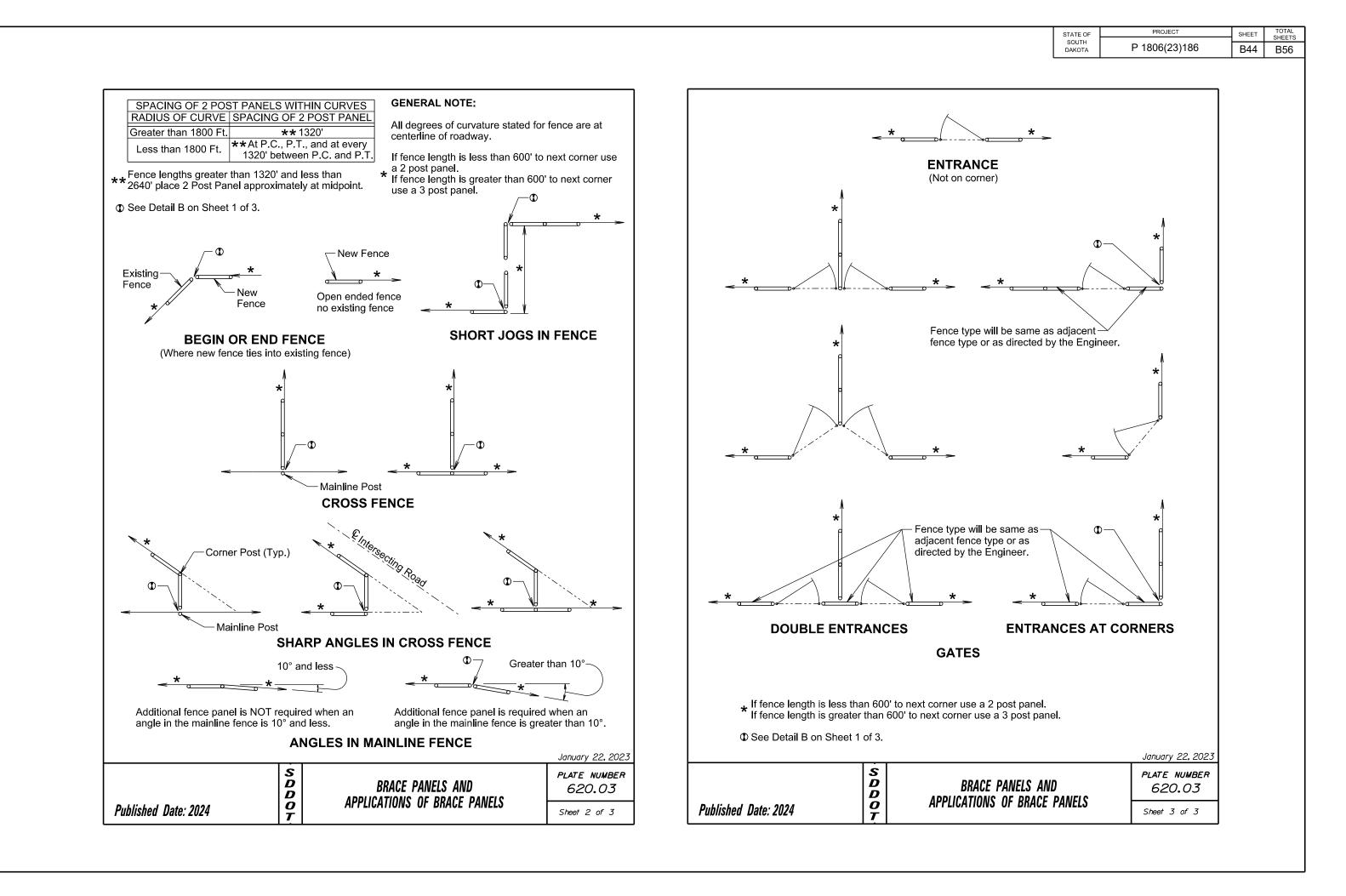

Attachment to circular pipes 15" through 24" diameter will be made with Type #1 straps. All other sizes will be attached with Type #2 rods and lugs.

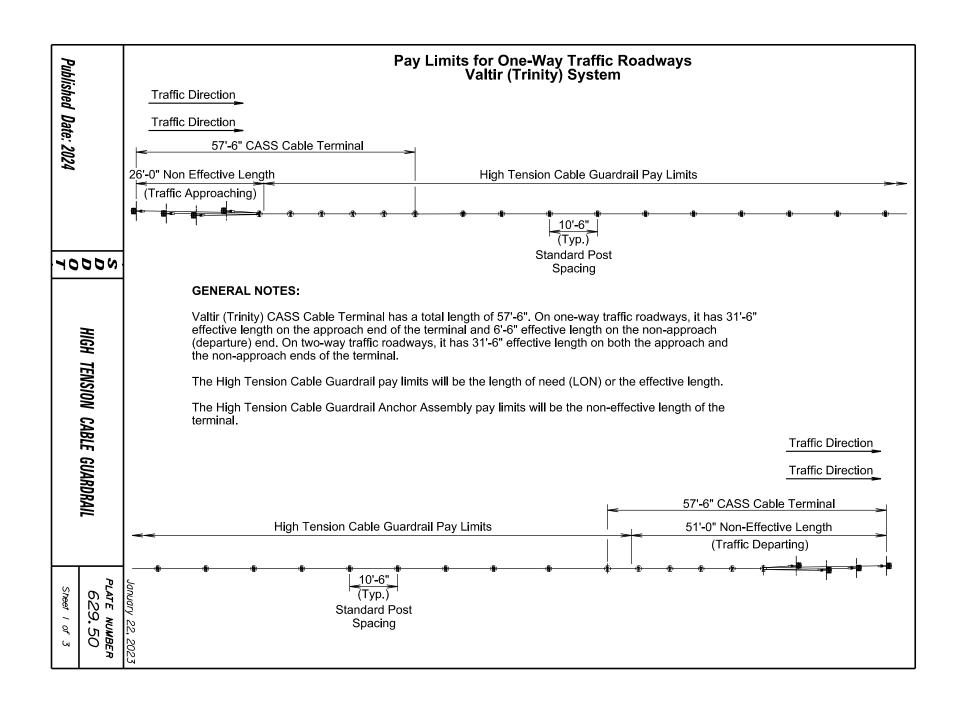
When stated in the plans, optional toe plate extension will be punched and bolted to end section apron lip with $\frac{3}{2}$ " diameter galvanized bolts. Steel for toe plate extension will be same gauge as end section. Dimensions will be overall width less 6" by 8" high.

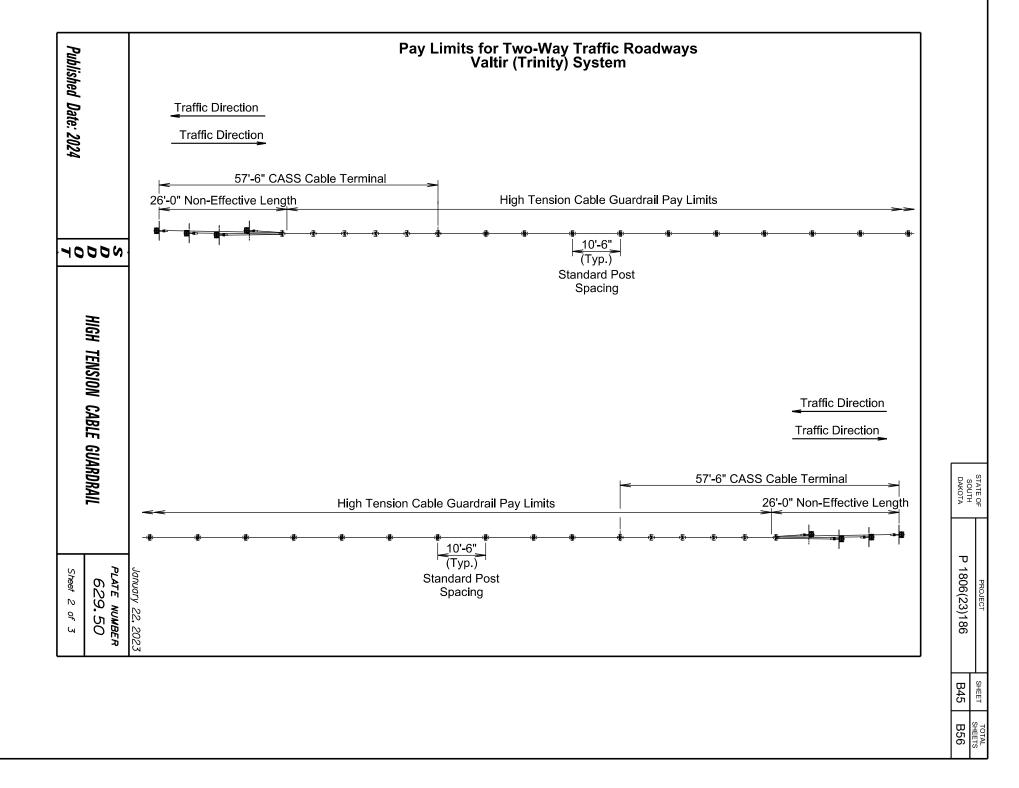

Installation will be performed in accordance with the Specifications.

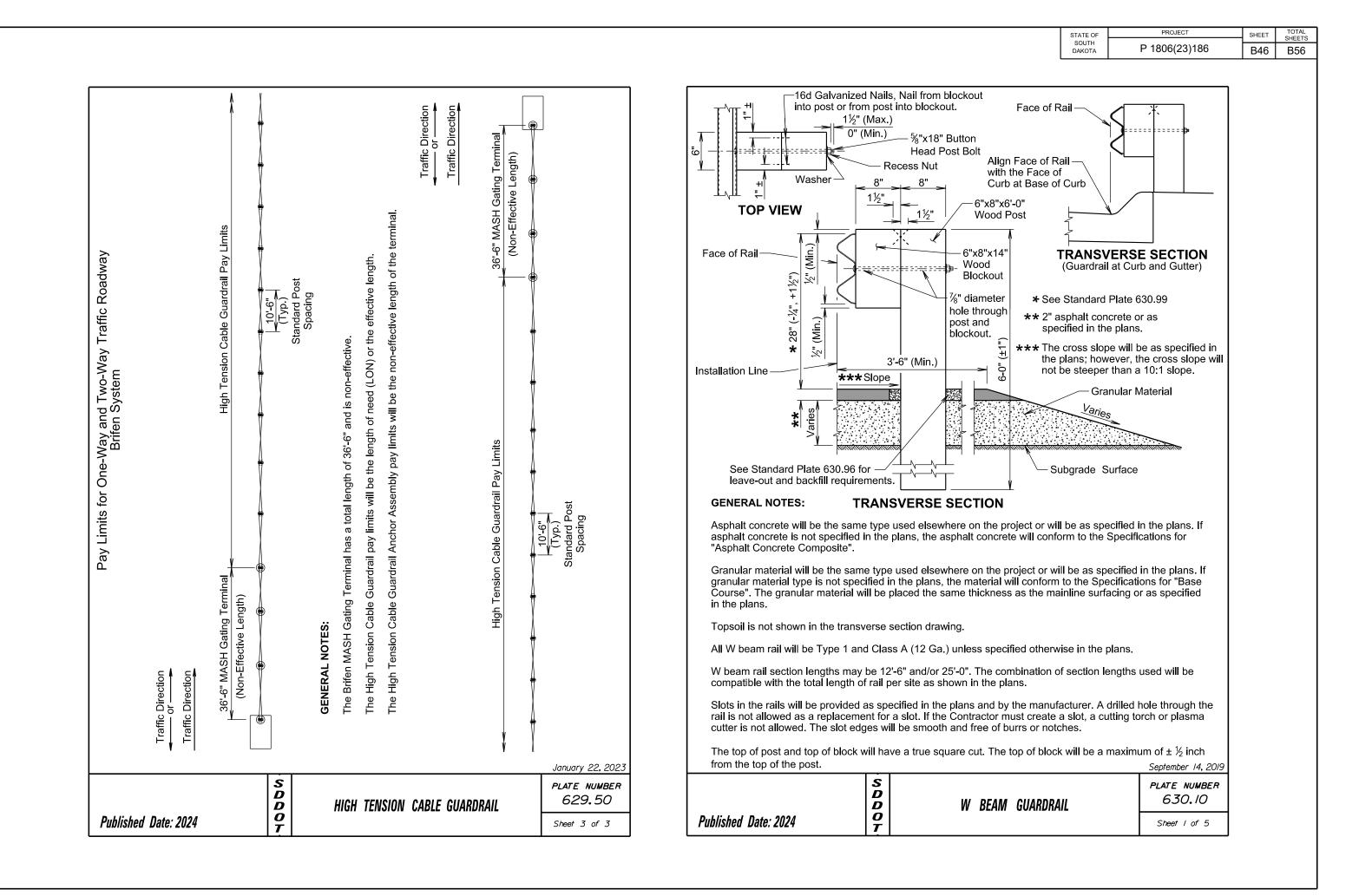

Cost of all work and materials required for fabrication and installation of sloped ends will be incidental to the bid items for the various sizes of sloped ends.

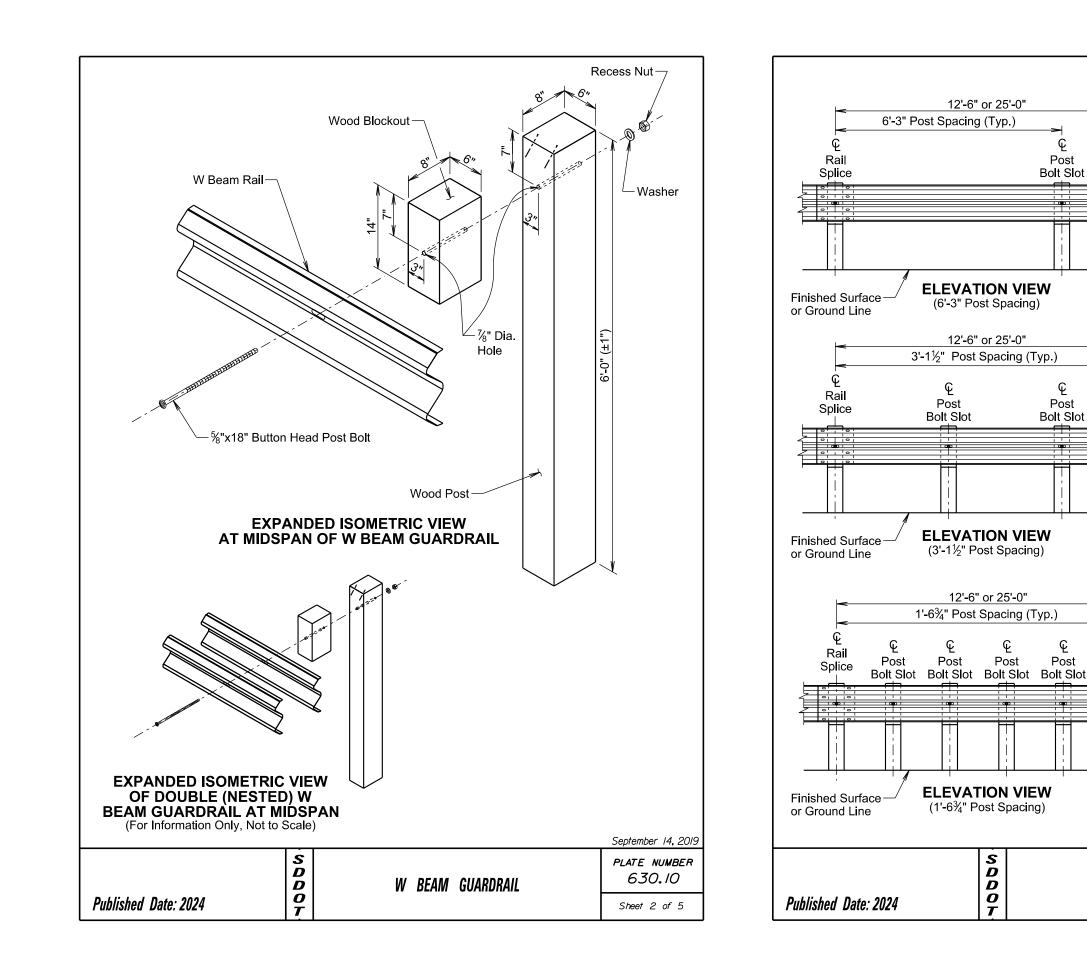
			August 31, 2022
	S D D	C.M.P. SLOPED ENDS	PLATE NUMBER 450.37
Published Date: 2024	0 T		Sheet 2 of 2




SOUTH DAKOTA P 1806(23)186 B42 B56	STATE OF	PROJECT	SHEET	TOTAL SHEETS
		P 1806(23)186	B42	

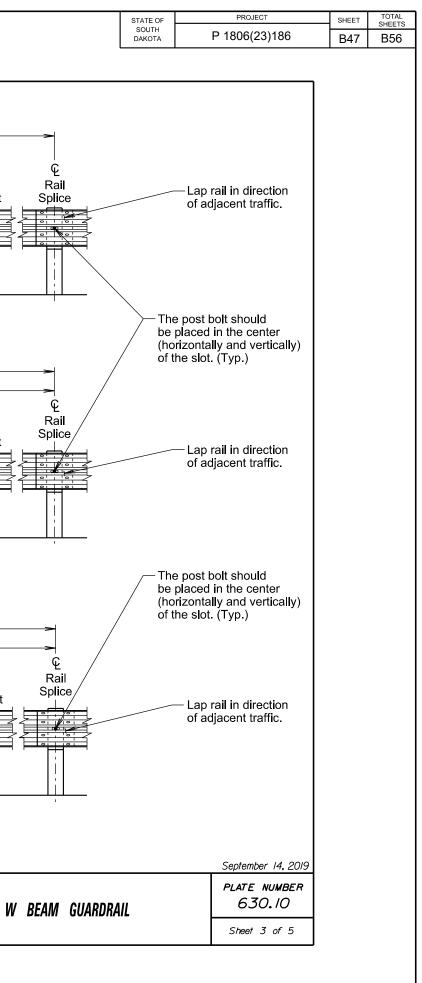


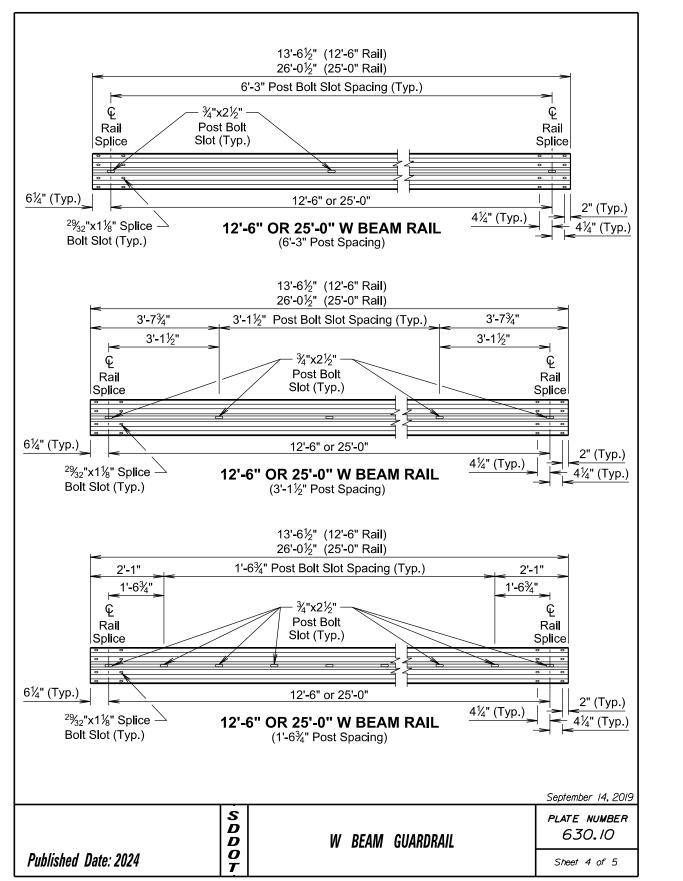


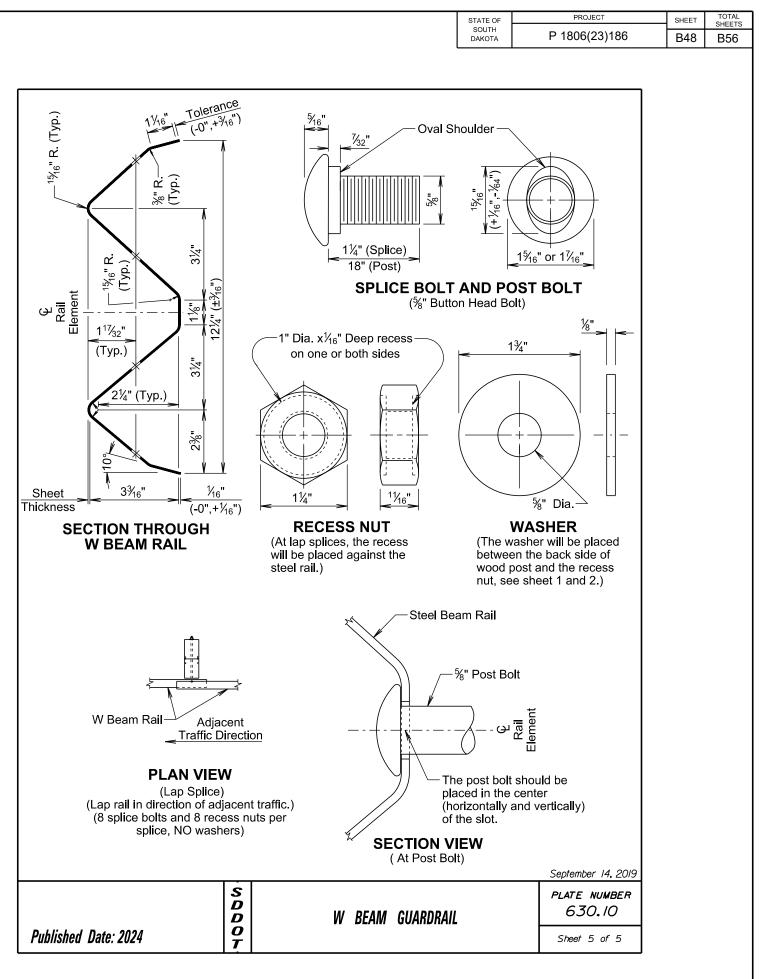

Published Nate: 2024	S D D 0	BRAC APPLICATIO
Published Date: 2024		ALLEDATION

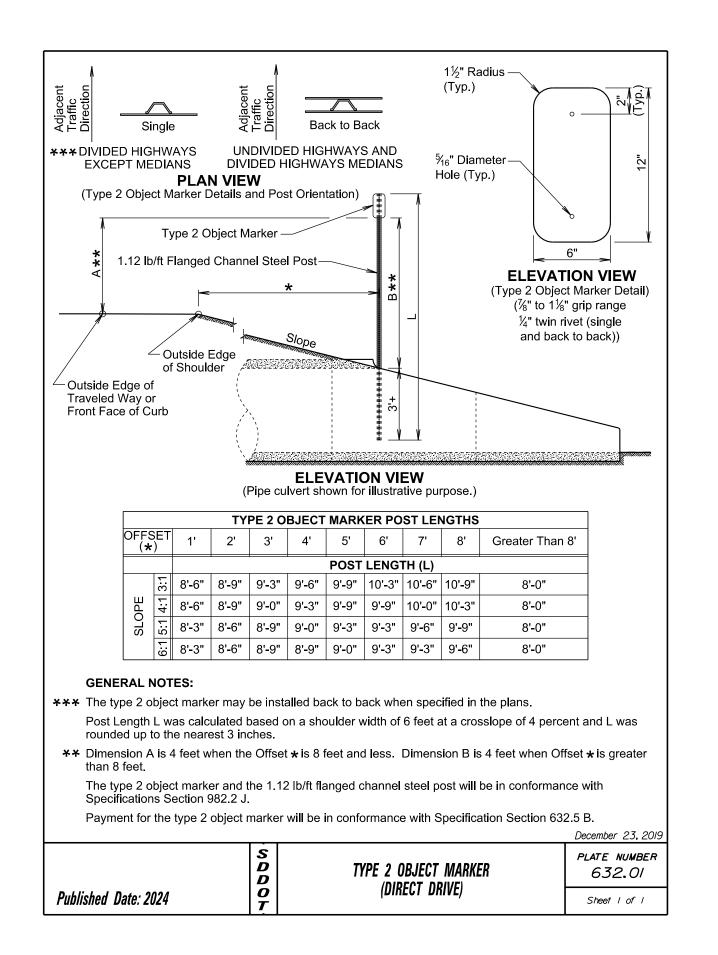
Բ

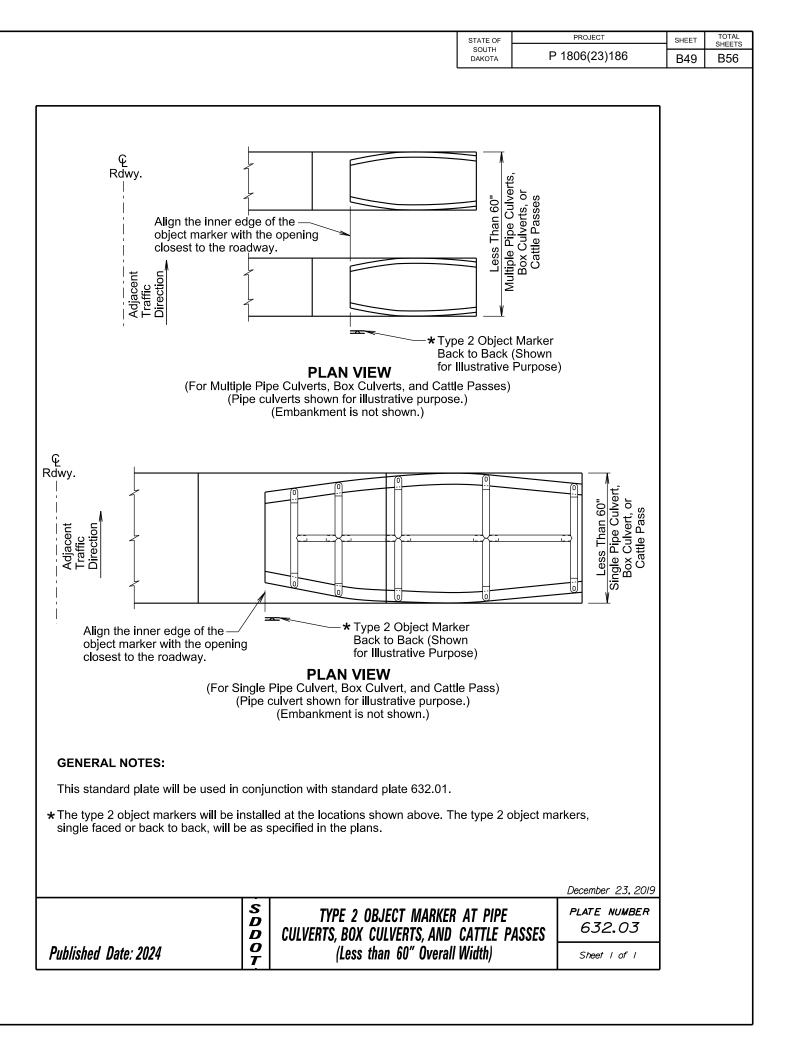
Post

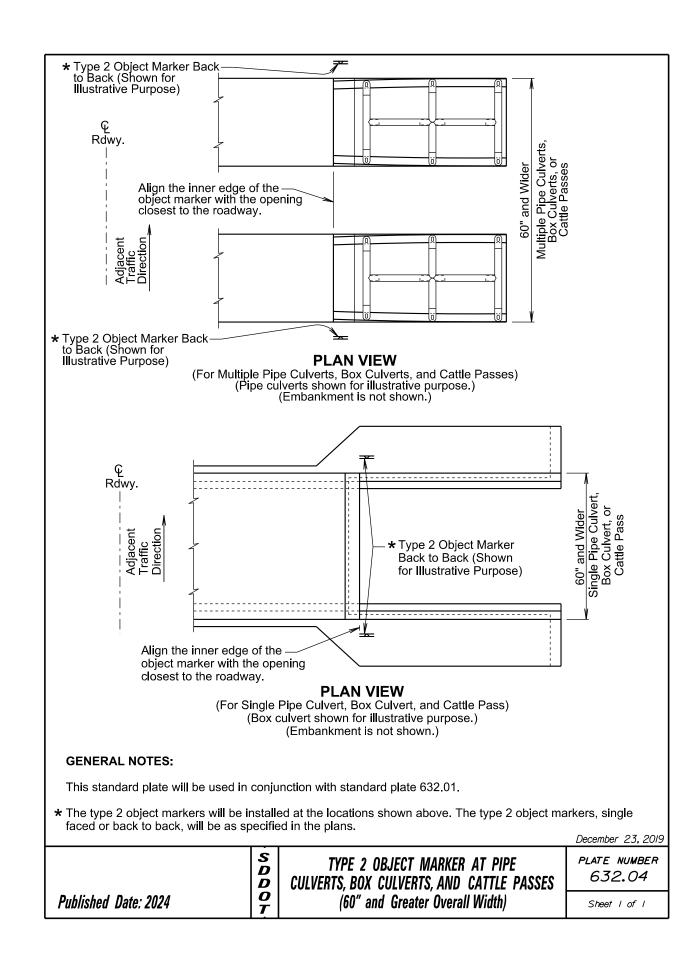

Ę

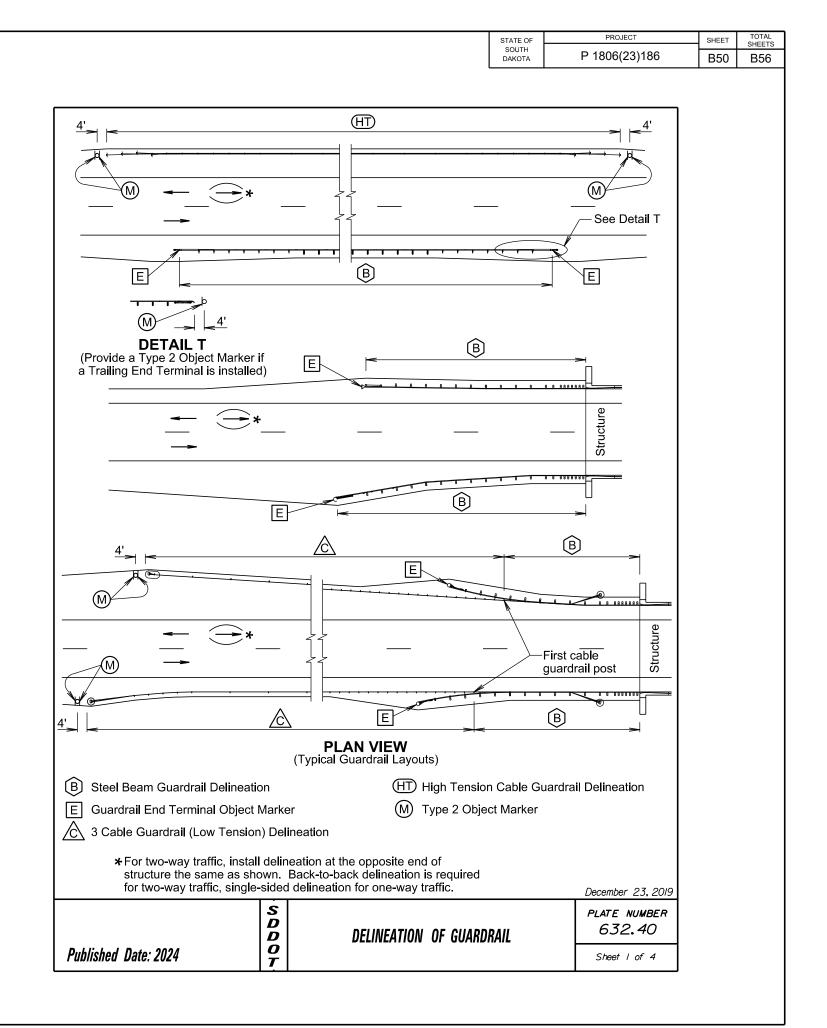

Post

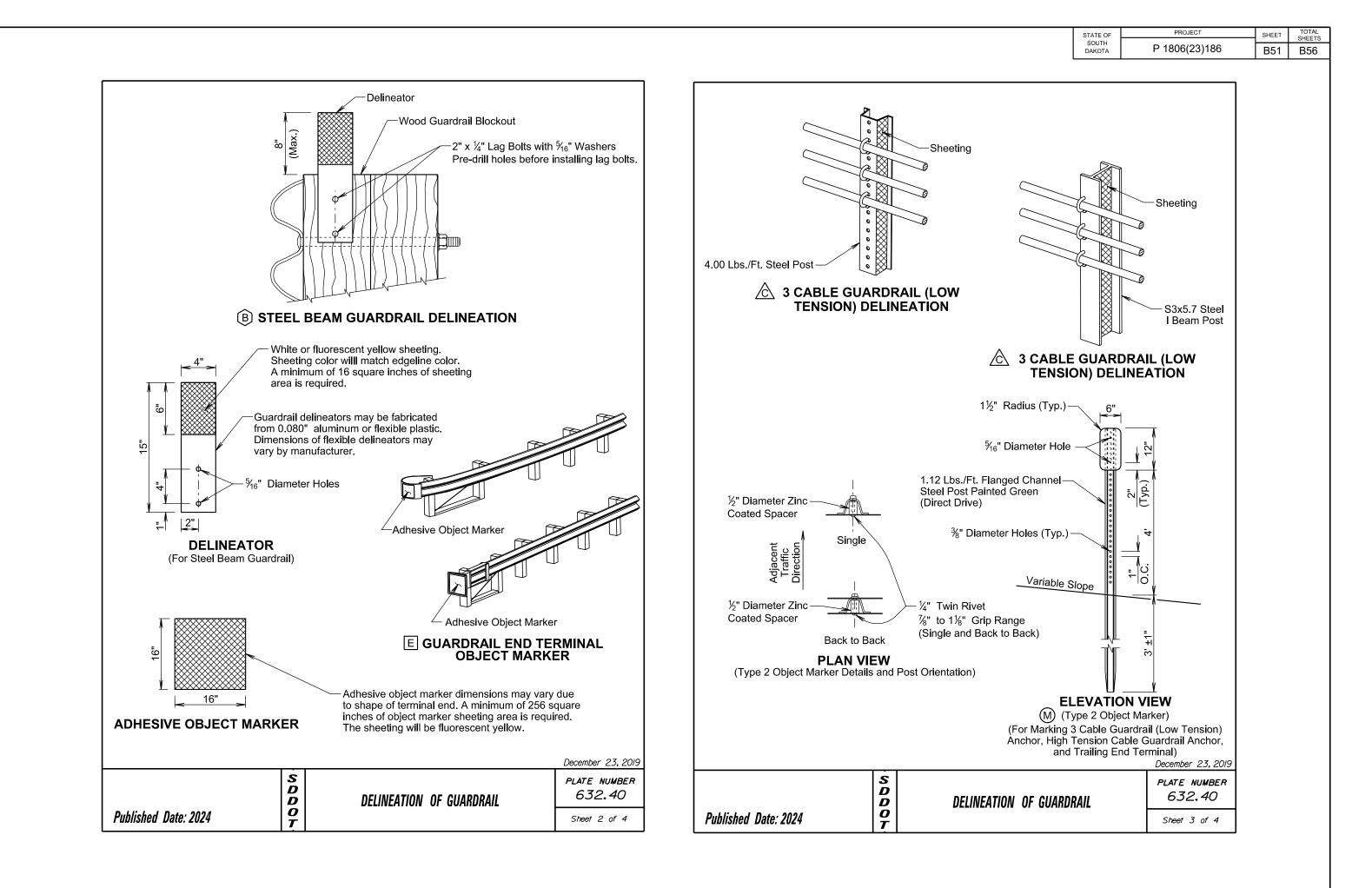

ap


Ę


Post







GENERAL NOTES:

The delineation of high tension cable guardrail will be reflective sheeting placed back to back on every other post cap or cable spacer. The sheeting will be type XI in conformance with ASTM D4956. The color of the reflective sheeting shall be the same as the nearest pavement marking.

The delineators for steel beam guardrail and sheeting on 3 cable guardrail (low tension) posts will be covered with a minimum of 16 square inches of reflective sheeting. The reflective sheeting will be type XI in conformance with ASTM D4956. Along two-way roadways the sheeting will be on both sides of the delineators and guardrail posts and will be white in color. For one-way roadways the sheeting will only be required on the side facing traffic and the color will be the same as the nearest pavement marking, yellow on the left side of the roadway and white on the right side.

When steel beam guardrail is attached to a bridge the first delineator will be attached to the post nearest the bridge.

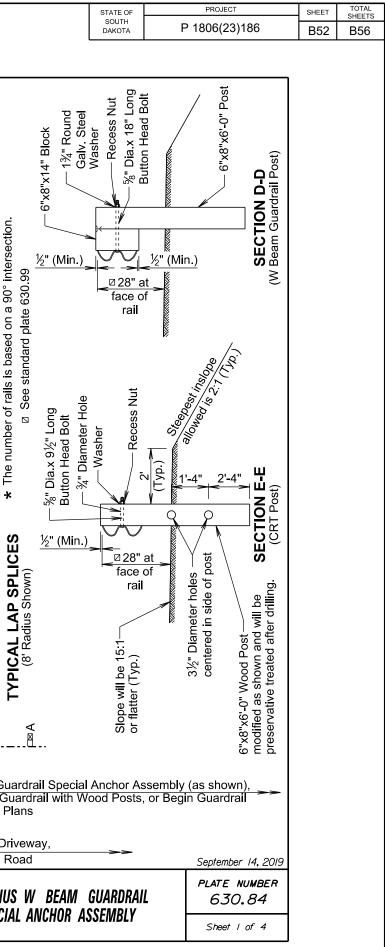
At bridges with guardrail less than 200 feet in length, a minimum of 4 delineators will be placed in addition to the end terminal yellow object marker. The spacing between the delineators will be approximately one third of the length of the guardrail.

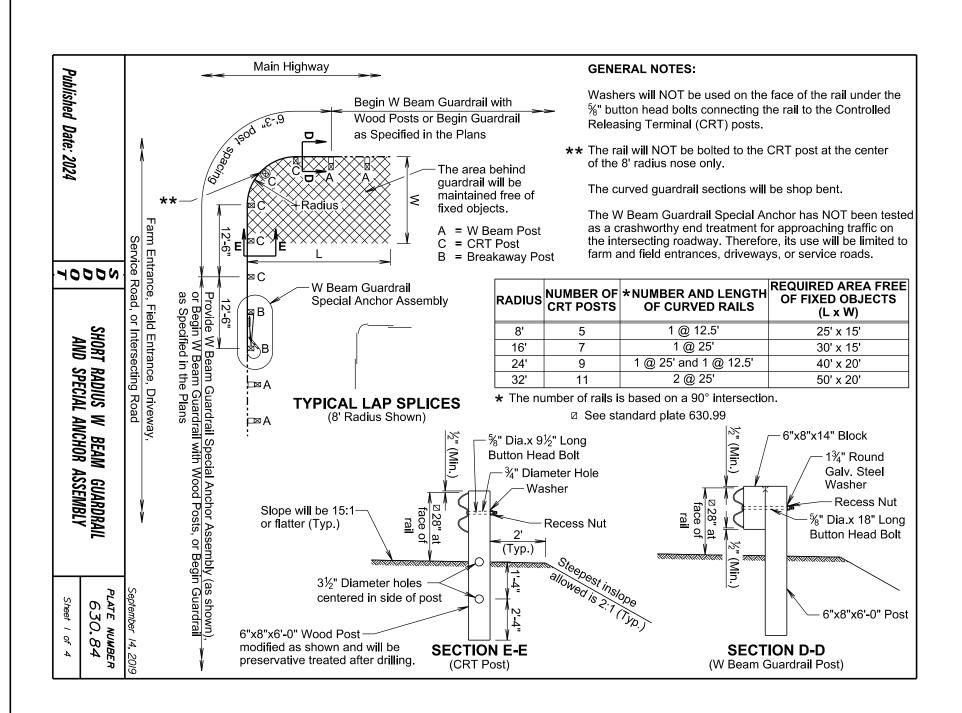
At bridges with guardrail 200 feet and greater in length, including bridges that have steel beam guardrail transitioning to 3 cable guardrail (low tension), the delineators will be placed at a spacing of approximately 50 feet. Delineation will extend throughout the length of the guardrail system.

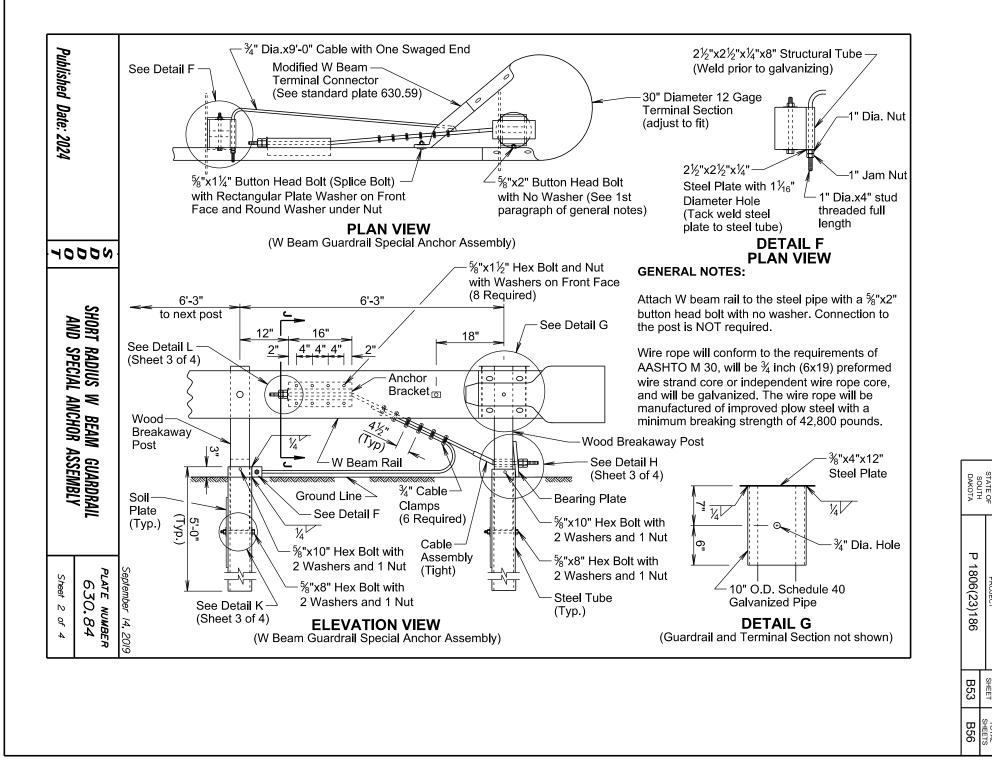
Steel beam guardrail that is not attached to a bridge and is less than 200 feet in length, a minimum of 4 delineators will be placed in addition to the end terminal yellow object markers. The spacing between the delineators will be approximately one third of the length of the guardrail.

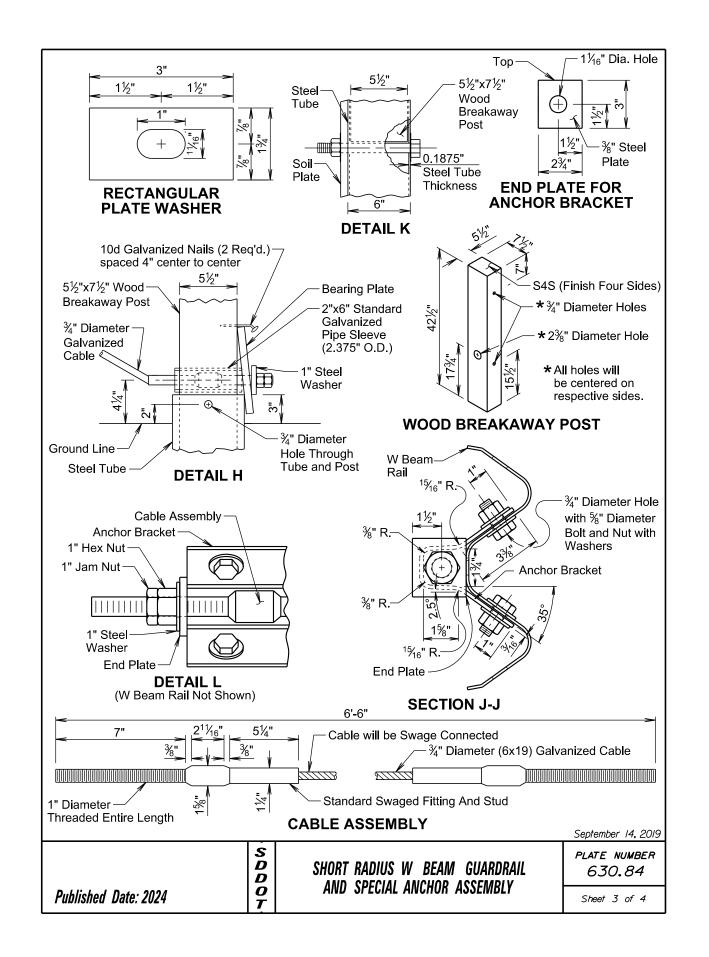
Steel beam guardrail that is not attached to a bridge and is 200 feet and greater in length, including steel beam guardrail transitioning to 3 cable guardrail (low tension), the delineators will be placed at a spacing of approximately 50 feet. Delineation will extend throughout the length of the guardrail system.

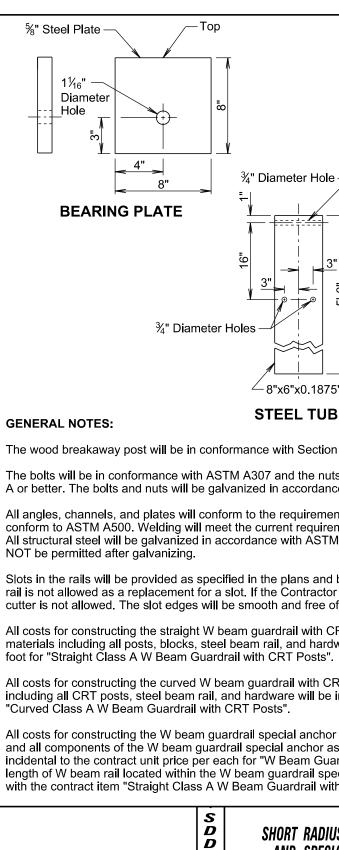
All costs for furnishing and installing single or back to back guardrail delineation on 3 cable guardrail and steel beam guardrail will be included in the contract unit price per each for "Guardrail Delineator".

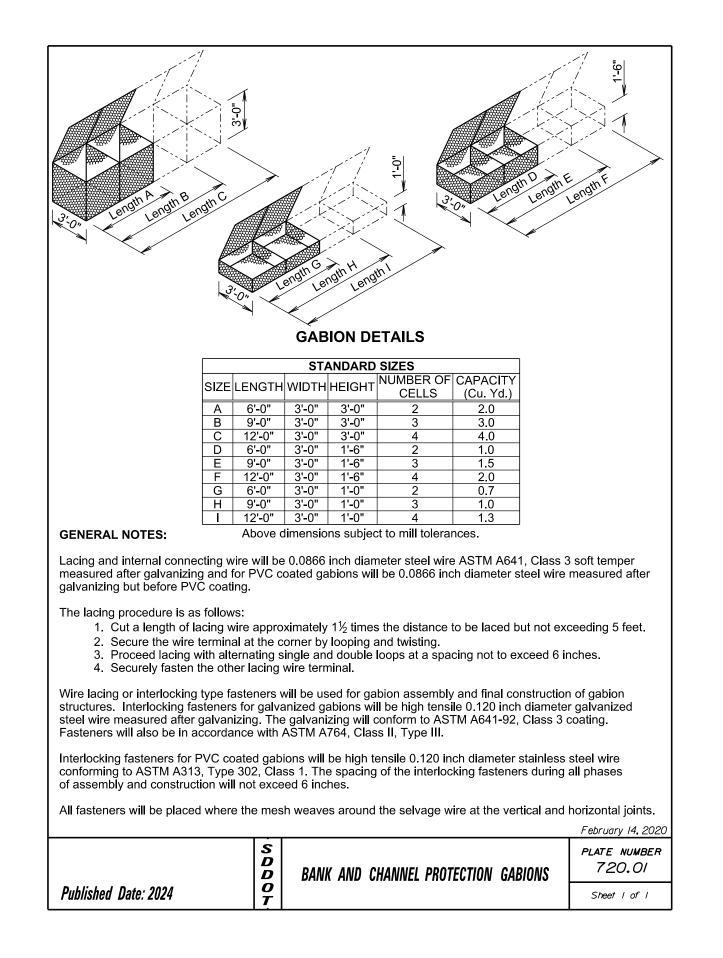

All costs for furnishing and installing the reflective sheeting on the cable spacers or post caps for the high tension cable guardrail will be incidental to the respective high tension cable guardrail contract item.

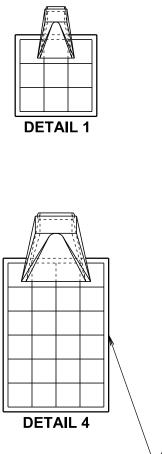

An adhesive object marker will be placed on the end of the W beam guardrail or MGS end terminal. The adhesive object marker dimensions may vary due to the shape of the terminal end. A minimum of 256 square inches of object marker reflective sheeting area is required. The reflective sheeting will be fluorescent yellow type XI sheeting in conformance with ASTM D4956. All costs for furnishing and installing the adhesive object marker will be incidental to various contract items.

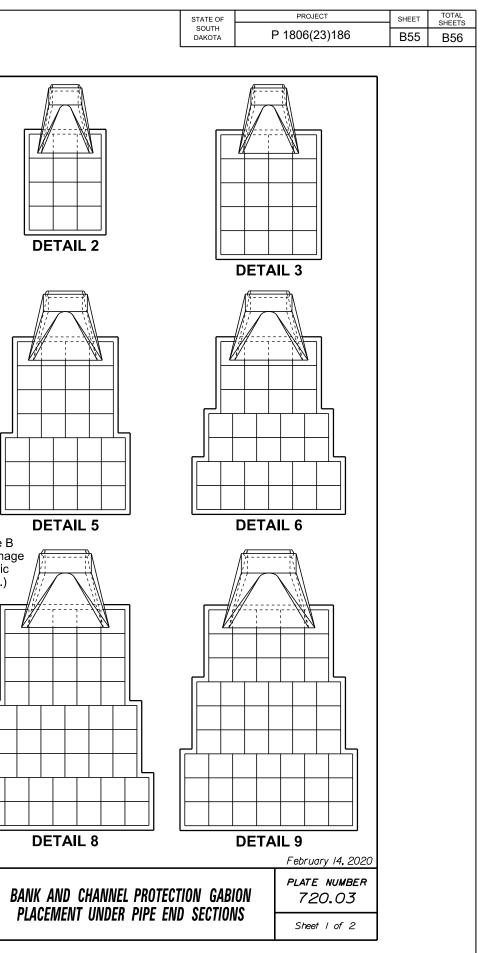

A type 2 object marker will be placed adjacent to the 3 cable guardrail (low tension) anchor, high tension cable guardrail anchor, and trailing end terminal at the location noted on sheet 1 of this standard plate. The type 2 object marker (6" x 12") will have fluorescent yellow type XI sheeting in conformance with ASTM D4956. All costs for furnishing and installing the type 2 object marker including the steel post, 6" x 12" reflective panel, and hardware will be included in the contract unit price per each for "Type 2 Object Marker" for single-sided and "Type 2 Object Marker Back to Back" for back to back type 2 object markers.

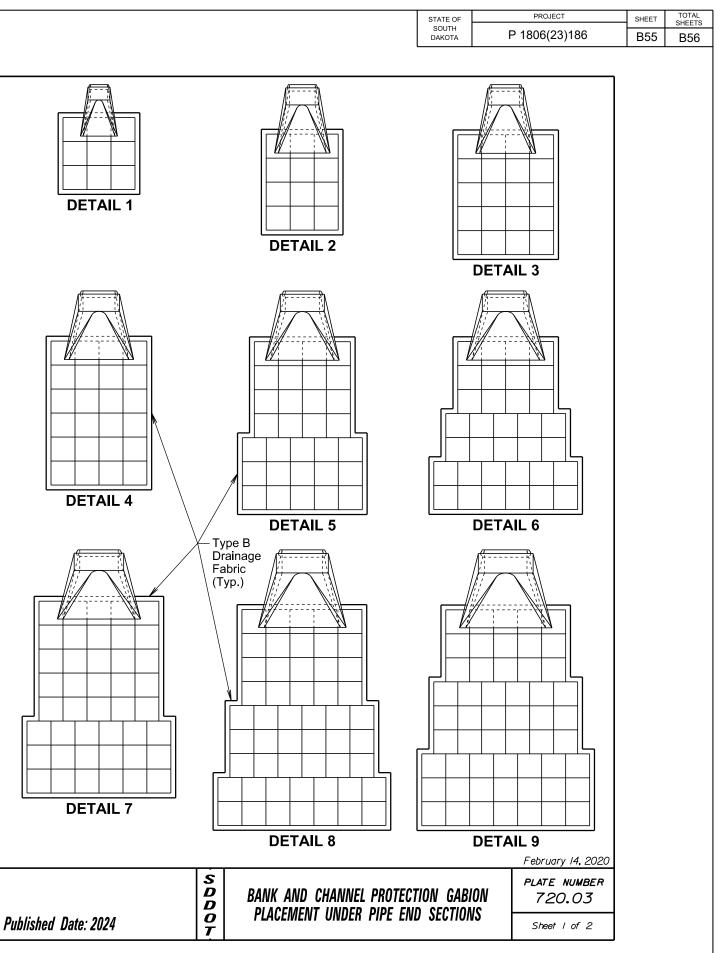

			December 23, 2019
	S D D	DELINEATION OF GUARDRAIL	plate number 632.40
Published Date: 2024	0 T		Sheet 4 of 4


Published Date: 2024




0


T


Published Date: 2024

	STATE OF SOUTH		PROJECT	SHEET	TOTAL SHEETS
	DAKOTA	I	P 1806(23)186	B54	B56
·					
	1/," c	Steel Pla			
			ameter Holes		
	_ V _ P				
iameter Hole	9" >	<u> </u>	9" >		
	<		>		
8"x6"x0.1875" TEEL TUBE		IL PL	ATE		
e with Section 630.2 A of the	Specificati	ions.			
7 and the nuts will be in confo in accordance with ASTM A		vith AS1	M A563, Grade		
ne requirements of ASTM A3 irrent requirements of the Str ce with ASTM A123. Punchin	uctural We	elding C	ode AWS D1.1.		
he plans and by the manufac he Contractor must create a s oth and free of burrs or notche	s l ot, a cutti				
ardrail with CRT posts includi rail, and hardware will be inci CRT Posts".					
ardrail with CRT posts includi dware will be incidental to the osts".					
pecial anchor assembly inclu cial anchor assembly except W Beam Guardrail Special A guardrail special anchor ass Guardrail with Wood Posts".	the W bea nchor Asse	am rail v embly"	vill be The 12'-6"		
			September 14, 2019		
SHORT RADIUS W BEAM	plate number 630.84				
AND SPECIAL ANCHOR AS	2FINRTA		Sheet 4 of 4		

	<u>-</u>			
	*			
		Pipe	Gabion	Type B
	Detail	Diameter		Drainage Fabric
		(Inches)	(Cu. Yd.)	(Sq. Yd.)
	1	12, 18, and 24	4.5	15
<u>ا ج</u> ا	2	30 and 36	6.0	19
RCP, RCP Arch, MP, and CMP Arch	3	42	10.0	29
	4	48 and 54	12.0	34
	5	60	15.5	43
	6	66	17.0	47
	7	72	21.5	57
CMP,	8	78	26.0	68
1 ()	-			

GENERAL NOTES:

Gabions at outlets of CMP and RCP will be placed under the end section a distance of 2 feet from the outlet end. For CMP end section installations, the upper fabric of the gabions will be modified to accommodate the metal end section as approved by the Engineer.

★ Gabion and type B drainage fabric quantities on this standard plate are based on standard gabion sizes D, E, and F as depicted on standard plate 720.01.

Type B drainage fabric will be placed under the gabions and around the exterior sides (perimeter) of the gabions as approved by the Engineer. The type B drainage fabric will be in conformance with Section 831 of the Specifications. Measurement and payment of the type B drainage fabric will be in conformance with Section 720 of the Specifications.

 S
 S
 D
 D
 February 14, 2020

 Published Date: 2024
 PLACEMENT UNDER PIPE END SECTIONS
 PLACEMENT UNDER PIPE END SECTIONS
 PLACEMENT 2 of 2

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	P 1806(23)186	B56	B56