SECTION B: GRADING PLANS

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	NH - P 0042(89)	B1	B30

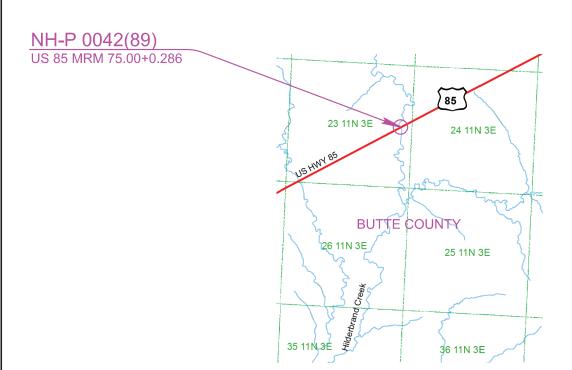
Plotting Date:

08/11/2025

INDEX OF SHEETS

General Layout with Index Estimate with General Notes & Tables B2-B7 B8

Pipe Quantities Fence Quantities


B9 Typical Grading Sections
Horizontal Alignment Data
Control Data
Legend B10-B11 B12

B13

B14

B15-B19 B20-B30 Plan and Profile Sheets

Standard Plates

SECTION B ESTIMATE OF QUANTITIES

Maintenance of Traffic Diversion(s)

Engineer Directed Surveying/Staking

Remove High Tension 4 Cable Guardrail

Remove Asphalt Concrete Pavement

Salvage and Stockpile Granular Material

Unclassified Excavation

Water for Embankment

Pipe Culvert Undercut

48" RCP, Install

24" CMP, Install

450E5215 24" CMP Flared End, Furnish

450E5216 24" CMP Flared End, Install

450E5251 78" CMP Flared End, Furnish

Slipline 84" Pipe

Cellular Grout

2 Post Panel

3 Post Panel

831E0110 Type B Drainage Fabric

450E5015 24" CMP Elbow, Furnish

48" RCP Class 2, Furnish

48" RCP Flared End, Furnish

48" RCP Flared End. Install

24" CMP 14 Gauge, Furnish

24" CMP Elbow, Install

78" CMP Flared End, Install

24" CMP Sloped End, Install

Type II Field Laboratory

Type 2 Right-of-Way Fence

720E1010 PVC Coated Bank and Channel Protection Gabion

Type 2 Temporary Fence

24" CMP Sloped End, Furnish

Cleanout for Culvert Treatment

Incidental Work, Grading

Muck Excavation

Undercutting

Contractor Furnished Borrow

Remove High Tension 4 Cable Guardrail Anchor Assembly

Construction Schedule, Category II

Mobilization

Grade Staking

Slope Staking

Clearing

Structure Staking

Remove Fence

Miscellaneous Staking

ITEM

BID ITEM

NUMBER

004E0030

009E0010

009E3230

009E3250

009E3280

009E3290

009E3301

009E4200

100E0100

110E0600

110E0707

110E0749

110E1010

120F0010

120E0600

120E1000

120E2000

120E6100

250E0020

270E0110

421E0100

450E0202

450E0210

450E2036

450E2037

450E4768

450E4770

450F5016

450E5252

450E5310

450F5311

450F8910

450E9244

462E0250

600E0200

620E0020

620E0520

620E1020 620E1030

UNIT

LS

LS

Mile

Mile

Mile

Each

Hour

LS

LS

Ft

Ft

Each

SqYd

CuYd

CuYd

CuYd

CuYd

MGal

LS

Ton

CuYd

Ft

Ft

Each

Each

Ft

Ft

Each

Each

Each

Each

Each

Each

Each

Each

Each

Ft

CuYd

Each

Ft

Ft

Each

Each

CuYd

SqYd

QUANTITY

Lump Sum

Lump Sum

0.228

0.228

0.228

40.0

2,025

4.862.0

11,119

17,499

4,227

335.8

3,644.4

58

160

160

4

4

160

160

2

2

1

2

2

1

140

93.6

1.899

1,624

9

13

31.5

254

Lump Sum

53

790

4

Lump Sum

Lump Sum

Water for Embankment is estimated at the rate of 15 gallons of water per cubic yard of Embankment minus Waste.

The estimated cubic yards of excavation and/or embankment required to construct outlet ditches, ditch blocks, and approaches are included in the earthwork balance notes on the profile sheets.

Special ditch grades and other sections of the roadway different than the typical section(s) will be constructed to the limits shown on the cross sections. If significant changes to the cross sections are necessary during construction, the Engineer will contact the Designer for the proposed change.

Generally, all shallow inlet and outlet ditches as noted on the plan sheets will be cut with a 10-foot wide bottom with 5:1 backslopes. However, the Engineer may direct the Contractor to adjust the ditch width for proper alignment with the drainage structure.

Temporary fence and/or permanent fence will be placed ahead of the grading operation unless otherwise directed by the Engineer.

TYPE II FIELD LABORATORY

GRADING OPERATION

The Contractor will provide high-speed broadband internet connection to the field lab. The multiport internet connection may be hardwired, through a cellular method, or other approved service that allows Wi-Fi connection. Prior to obtaining the internet connection, the Contractor will submit the internet connection's technical data to the Area Office to check for compatibility with the state's computer equipment. The Contractor's personnel are prohibited from using the internet connection unless pre-approved by the Project Engineer. The internet service will be incidental to the contract unit price per each for "Type II Field Laboratory".

UTILITIES

The Contractor will be aware that the existing utilities shown in the plans were surveyed prior to the design of this project and might have been relocated or replaced by a new utility facility prior to construction of this project, might be relocated or replaced by a new utility facility during the construction of this project, or might not require adjustment and may remain in its current location. The Contractor will contact each utility owner and confirm the status of all existing and new utility facilities. The utility contact information is provided elsewhere in the plans or bidding documents.

Plotting Date: 09/04/2025 09/04/2025 DG

CLEARING

Before clearing activities begin, the Contractor will contact the Engineer to determine the limits of clearing for the project. If the trees or shrubs that are suppose to remain within the limits of work are damaged or destroyed by the Contractor, the Contractor will replace them with the same size and type at the Contractor's expense.

Slash and non-merchantable timber will be disposed of by chipping, burning, or burying. All residue from chipping or burning will be buried. Burial pits will be at locations approved by the Engineer. The Contractor will follow the prescribed burning provisions of the Fire Plan in his/her preparation for and conduction of all burning operations. Location of slash piles and all other aspects of slash disposal by burning must be approved in advance by the Engineer.

Stumps from right-of-way clearing will be buried at locations approved by the Engineer.

General Geology

The Ludlow Formation, Hell Creek Formation and Pierre Shale underlies the project areas. At the US85 site, the Pierre Shale is covered by a varying thickness of Quaternary Alluvium. The South Dakota Geological Survey describes the formations that will be encountered on the project as outlined

Quaternary Alluvium deposits consist of clay to boulder sized clasts with locally abundant organic material. Alluvial materials may be encountered within drainages adjacent mainline at Site 1: US 85 MRM 75.00+0.286.

The Ludlow Formation consists of white, tan, yellow, and gray cross-bedded, fine to medium grained, silty sandstone interbedded with locally bentonitic, gray siltstone, claystone, and sandy to silty claystone. Characterized by uranium bearing lignite beds and "clinker" beds formed by burning coal beds. The Ludlow Formation will be encountered at Site 5: SD20 MRM 50.00+0.248

The Hell Creek Formation consists of somber gray, tan, and rust colored shale and thinly laminated sandstone. The Hell Creek Formation will be encountered at Site 4: SD20 MRM 16.00+0.803

The Pierre Shale consists of blue gray to dark gray, fissile to blockly shale with persistent beds of bentonite, black organic shale, and light-brown chalky shale. Contains minor sandstone, conglomerate, and abundant carbonate and ferruginous concretions. The Pierre Shale may be encountered at Site 1: MRM 75.00+0.286.

General Geology

Some cut sections may encounter thicker beds of sandstone, siltstone, and claystone ledge rock. Since the durability of these rocks units can vary with the degree of weathering, extra effort may be required to complete the excavation. Most of the material encountered should be able to be excavated using conventional methods associated with normal Unclassified Excavation. Blasting is not anticipated. Muck Excavation will be required at the areas shown in the plans or as directed by the Engineer.

The traffic diversion located at Stations 27+74 will be constructed according to the geometric layouts shown in the plans with the temporary drainage structure(s) provided in the following table. The temporary structure sizes are designed to pass the design flood frequency flows without overtopping the traffic diversion grade, to minimize potential upstream flooding, and are sized to meet FEMA (Federal Emergency Management Agency) requirements where applicable. The structure(s) will be placed at the flowline elevation and location as stated in the "Table of Temporary Drainage Structures in Traffic Diversions". If the Contractor proposes to use a different size drainage structure and/or a different geometric layout for the temporary diversion, the proposal must be submitted to the Engineer during the project preconstruction meeting. This information will be forwarded to the DOT Hydraulics Office for review. Construction of the traffic diversion(s) will not be allowed until approval of the proposal is obtained from the Hydraulics Office.

Table of Temporary Drainage Structures in Traffic Diversions

Traffic	Design	*	Ordinary	Temporary
Diversion	Flood	Flowline	High Water	Structure
Location	Frequency	Elevation	Elevation	Option 1
4+60	2 year	2969.8	2975.7	2-42" CMP

* The flowline elevation is at the inlet of the traffic diversion.

Costs to provide temporary drainage structures will be incidental to the contract lump sum price for "Maintenance of Traffic Diversion(s)".

Traffic diversions in waterways will be constructed such that erodible material placed below the ordinary high water elevation will be lined with a 2-foot thick layer of class B riprap. Type B drainage fabric will be placed under the riprap and under any diversion embankment that is placed in a wetland as shown in the construction plans. In the event flowing water is present, only riprap will be allowed to be placed or removed below the ordinary high water elevation. The quantity of riprap used in the traffic diversion is included in the quantity for "Class B Riprap" in Section E-Structures estimate of quantities. The quantity of riprap used for the traffic diversion will be reused as riprap for the structure and all costs incurred to place and remove the riprap at the traffic diversion and subsequently place the riprap at the structure will be incidental to the contract unit price per ton for "Class B Riprap". The traffic diversions will be built in close conformity to the plan gradeline. Unless otherwise shown in the plans, the traffic diversions will be removed such that the original ground surface contours and elevations are restored and the hydraulic capacity of the waterway is maintained. The removal will be done in such a manner that there is minimal disturbance to the channel bed.

The removed traffic diversion embankment will be used in the mainline embankment unless otherwise approved by the Engineer.

Traffic Diversion Excavation as shown on the plans profile sheets is the excavation required to construct the traffic diversion portion that is located inside the mainline cross section work limits. The Traffic Diversion Excavation

1	STATE OF SOUTH	PROJECT	SHEET	TOTAL SHEETS
ı		NUL D 0040(00)		SHEETS
ı	DAKOTA	NH - P 0042(89)	B3	B30

Plotting Date:

08/11/2025

quantity is included in the mainline excavation quantity in the Table of Excavation Quantities by Balances and in the Table of Unclassified Excavation.

Traffic Diversion Borrow, as shown on the plans profile sheets, is obtained from the mainline excavation from outside of the traffic diversion cross section work limits. The Traffic Diversion Borrow quantity is included in the mainline excavation quantity in the Table of Excavation Quantities by Balances and in the Table of Unclassified Excavation.

Added Traffic Diversion Excavation as shown on the plans profile sheets is the excavation required to construct the traffic diversion portion that is located outside the mainline cross section work limits. The Added Traffic Diversion Excavation quantity is added to the unclassified excavation quantity in the Table of Unclassified Excavation.

TABLE OF TRAFFIC DIVERSION RIPRAP AND DRAINAGE FABRIC

		Ordinary	Traffic	Section E	Type B
		High	Diversion	Class B	Drainage
		Water	Riprap	Riprap	Fabric
Station	L/R	Elevation	(Ton)	(Ton)	(SqYd)
27+74		2975.7	65.8	174.5	169
		Totals	65.8	174.5	169

SHRINKAGE FACTOR: Embankment +30%

TABLE OF EXCAVATION QUANTITIES BY BALANCES

			Excavation	* Undercut	* Muck Exc.	* Contractor Furnished Borrow Exc.	Total Excavation	** Waste
	Station to	Station	(CuYd)	(CuYd)	(CuYd)	(CuYd)	(CuYd)	(CuYd)
SD 20	306+15	316+75	1178	3523	53	6711	11465	53
US 85	27+05	28+45	404	704	0	2044	3152	0
US 85 Div.	0+00	9+49		0	0	8744	8744	0
		Totals:	1582	4227	53	17499	23361	53

- * The quantities for these items are in the Estimate of Quantities under their respective contract items.
- ** The quantities for these items are for information only.

TABLE OF UNCLASSIFIED EXCAVATION

				(CuYd)
Excavation	า			1582
Undercut				4227
Topsoil				2596
Exc. for De	eep Pipe &	RCBC F	Removal	364
Added Tra	ffic Diversion	on Exca	vation	422
Salvaged	Granular	Base	Material	249
(from cut s	ections)			
Salvaged	Granular	Base	Material	1679
(from fill se	ections)			

11119 Total

PROCEDURES FOR DETERMINING UNCLASSIFIED EXCAVATION QUANTITY

When plan quantities are used for payment, the Unclassified Excavation quantity will be used for final payment and the plans quantity of Topsoil and salvaged surfacing items listed in the Table of Unclassified Excavation will not be adjusted according to field measurements.

The following paragraphs are general earthwork information and information in regard to computing the Unclassified Excavation quantity when final cross sections are taken in the field:

The Unstable Material Excavation quantity is included in the Excavation quantity listed in the Table of Unclassified Excavation. When finaling a project, the Unstable Material Excavation quantity will be added to the Excavation quantity to compute the Unclassified Excavation quantity.

The Topsoil quantity in the Table of Unclassified Excavation is an estimate. When finaling a project, the total quantity of field measured Topsoil will be used in place of the estimated Topsoil quantity. The quantity of Topsoil from the cuts will be paid for twice as Unclassified Excavation, as it will be in both the Excavation and Topsoil quantities. This will be full compensation for Excavation, which includes necessary undercutting to provide space for placement of topsoil.

The Excavation quantities from individual balances and the Table of Unclassified Excavation have been reduced by the volume of in place surfacing that will be removed and/or salvaged.

Salvaged Granular Base Material will be paid for at the contract unit price per ton and is also included in and paid for once as Unclassified Excavation. As shown in the Table of Unclassified Excavation, the estimated quantity of 1679 cubic yards of Salvaged Granular Base Material from fill sections will be added to the Excavation quantity to determine the Unclassified Excavation quantity. When finaling a project, the quantities of Salvaged Granular Base Material from fill sections will not be adjusted according to field measurements. The quantity of Salvaged Granular Base Material from cut sections will not be added to the Excavation quantity as it is already in the cuts on the final cross sections.

The volume of in place Asphalt Surfacing removed will NOT be paid for as Unclassified Excavation.

The Excavation quantities from individual balances and the table above have been reduced by the volume of in place asphalt pavement that will be removed.

When finaling a project, the estimated quantity of 770 cubic yards of Asphalt Pavement removed from the cut sections will be subtracted from the Unclassified Excavation quantity for final payment. The quantity of Asphalt Pavement from cut sections subtracted from the Unclassified Excavation quantity will be plans quantity and will not be adjusted according to field measurements.

WASTE EXCAVATION

The quantity of waste in the Table of Excavation Quantities by Balances that is muck excavation or excess excavation material will be disposed of at a Contractor furnished site acceptable to the Engineer.

UNDERCUTTING

In all grading sections the earthen subgrade will be undercut 2 feet below the earthen subgrade surface. The undercut material or other suitable material, as directed by the Engineer, will then be replaced and compacted to the density specified for the section being constructed.

Shallow embankment sections, fills less than 2 feet in height measured at the finished subgrade shoulders, will be undercut to ensure a minimum 2-foot height of earth embankment for the entire width of roadbed. The upper 6 inches of undercut material that consists of topsoil with a high humus content will be used as topsoil, placed in the fill slopes outside the shoulders of the earthen subgrade, or placed in the lower portion (below 4 foot depth) in fills which are greater than 4 feet in height. The remaining undercut soil and soil obtained from adjacent excavation (excluding the upper 6 inches) will then be replaced and compacted to the density specified for the section being constructed.

The plan shown quantity will be the basis of payment. However, if there are additional areas of undercut other than what is shown in the plans, the Engineer will direct removal of these areas and the additional areas will be measured according to the Engineer.

TABLE OF UNDERCUTTING LOCATIONS RURAL

	Station 1	0	Station
SD 20	306+00		316+75
US 85	27+00		28+50

UNSTABLE MATERIAL EXCAVATION

The areas of unstable material excavation are drawn on the cross sections with a normal depth of 2 feet. The estimated quantity of 375 cubic yards of unstable material excavation will be paid for at the contract unit price per cubic yard for "Unclassified Excavation".

All areas designated as Unstable will be excavated. The unstable material excavated on this project will be placed outside the subgrade shoulder in fill sections or stockpiled and used as topsoil.

Field measurement of unstable material excavation will not be made. However, if there are additional areas of unstable material excavation other than what is shown in the plans, the Engineer will direct removal of these areas and the additional areas will be measured according to the Engineer.

TABLE OF UNSTABLE MATERIAL EXCAVATION

					Depth	Quantity
	Station	to	Station	L/R	(Ft)	(CuYd)
SD20	308+50		312+50	L	2	401
SD20	311+00		311+50	R	2	119
					Total:	520

MUCK EXCAVATION

The areas of muck excavation are drawn on the cross sections with a normal depth of 3 feet. The estimated quantity of 53 cubic yards of muck excavation will be paid for at the contract unit price per cubic yard for "Muck Excayation".

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	NH - P 0042(89)	В4	B30

Plotting Date:

08/11/2025

Muck excavation consists of the removal of highly organic and/or highly saturated material from the designated areas shown on the cross sections. Highly organic muck material will not be used in the embankment but may be used as topsoil. Non-organic muck material may be used as embankment outside of the fill subgrade shoulder if it is properly handled and dried prior to placement in the embankment.

Field measurement of muck excavation will not be made unless the Engineer orders additional excavation, or when the Engineer determines, in accordance with Section 120.3 A.1 of the Specifications, that the classification of excavation be changed.

If the areas designated as muck excavation can be removed with similar equipment and procedures as used for unclassified excavation, the material will be measured and paid for as "Unclassified Excavation".

TABLE OF MUCK EXCAVATION

					Deptil	Quantity	
	Station	to	Station	L/R	(Ft)	(CuYd)	
US 20	316+00		316+25	L	3	53	_
					Total:	53	_

SALVAGE AND STOCKPILE GRANULAR BASE MATERIAL - US85

An estimated 470.7 tons (249.0 Cubic Yards) granular base material will be salvaged from the entire length of the existing highway and stockpiled at a site furnished by the Contractor and satisfactory to the Engineer.

The quantity of salvage granular base material may vary from the plans. No adjustment will be made to the contract unit price for variations of the quantity of "Salvage and Stockpile Granular Material."

It is estimated that there are 177.9 cubic yards of salvageable material per station. This rate was used to compute the unclassified excavation quantities. The rate of salvageable material is based on a 40-foot width.

The following table is furnished for information only.

		Distan	Thickness of	
		Cent	erline	Granular
		(Fe	eet)	Material
	MRM	Lt.	Rt.	(Inches)
US 85	75.00+0.286	20	20	15
	Ave	15		

SALVAGE AND STOCKPILE GRANULAR BASE MATERIAL - SD20

An estimated 3173.7 tons (1679.2 Cubic Yards) granular base material will be salvaged from the entire length of the existing highway and stockpiled at a site furnished by the Contractor and satisfactory to the Engineer.

The quantity of salvage granular base material may vary from the plans. No adjustment will be made to the contract unit price for variations of the quantity of "Salvage and Stockpile Granular Material."

Quantity

SALVAGE AND STOCKPILE GRANULAR BASE MATERIAL - SD20 (CONTINUED)

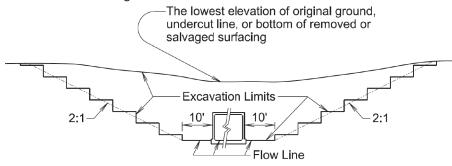
It is estimated that there are 158.4 cubic yards of salvageable material per station. This rate was used to compute the unclassified excavation quantities. The rate of salvageable material is based on a 36-foot width.

The following table is furnished for information only.

		Distan	ce from	Thickness of		
		Cent	erline	Granular		
		(Feet)		Material		
	MRM	Lt.	Rt.	(Inches)		
SD 20	50.00+0.248	18	18	14		
	Ave	Average Thickness:				

CONTRACTOR FURNISHED BORROW EXCAVATION

The Contractor will provide a suitable site for Contractor furnished borrow excavation material. The Contractor is responsible for obtaining all required permits and clearances for the borrow site. The borrow material will be approved by the Engineer. The plans quantity for "Contractor Furnished Borrow Excavation" as shown in the Estimate of Quantities will be the basis of payment for this item.


Restoration of the Contractor furnished borrow excavation site will be the responsibility of the Contractor.

EXCAVATION FOR DEEP BOX CULVERT REMOVAL

Included in the quantity of "Unclassified Excavation" are 364 cubic yards of excavation for removal of deep box culverts. Deep box culverts are existing mainline box culverts at depths of 10 feet or greater (measured from the flow line to the lowest elevation of either the existing ground line, undercut line, or bottom of removed or salvaged surfacing).

All work necessary to excavate and backfill the deep box culverts including labor, equipment, and incidentals will be incidental to the contract unit price per cubic yard for "Unclassified Excavation". Payment for deep box culvert excavation will be based only on plans quantity and measurement of these excavation quantities during construction will not be performed.

The excavation quantities for deep box culverts are not included with the earthwork balance quantities on the plans profile sheets. The quantities computed for excavation of the deep box culverts are based on the limits shown in the drawing below.

TABLE OF EXCAVATION FOR DEEP BOX CULVERT REMOVAL

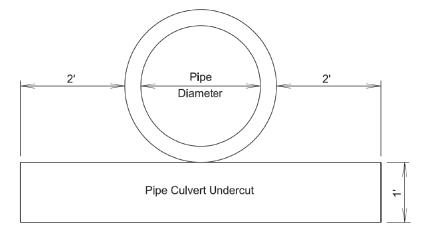
		Quantity
Station	Туре	(CuYd)
* 27+74	RCBC	364

^{*} The excavation quantity includes excavation for the installation of the new RCBC at US 85 Station 27+74.

PIPE CULVERT UNDERCUT

The table includes undercut for 36 inch and larger pipe culverts. The depth of undercut is an estimate and the actual depth necessary will be determined during construction. Pipes listed may or may not require undercutting and pipes not listed may require undercutting. The Engineer will determine which pipe will be undercut in accordance with Section 421 of the Specifications.

	Undercut	Pipe Culvert
Station	Depth	Undercut
	(Ft)	(CuYd)
311+13	1	28.8
311+37	1	28.8
	Total:	57.6


The table below contains the rate for one-foot depth of pipe culvert undercut per foot of pipe length and should be used as an aid in determining the actual amount of undercut to be performed during construction. The table is derived from the drawing below and conforms to the Specifications. When calculating pipe culvert undercut, the length of pipe ends should be included in the overall pipe length.

Storm sewer and approach pipes do not require undercutting unless specified otherwise in these plans.

Pipe	Round Pipe	Arch Pipe
Diameter	Undercut Rate	Undercut Rate
	for 1' Depth	for 1' Depth
(In)	(CuYd/Ft)	(CuYd/Ft)
24	0.2407	0.2577
30	0.2623	0.2847
36	0.2840	0.3110
42	0.3056	0.3337
48	0.3272	0.3596
54	0.3488	0.3827
60	0.3704	0.4105
66	0.3920	
72	0.4136	0.4630
78	0.4352	
84	0.4568	0.5123
90	0.4784	

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	NH - P 0042(89)	B5	B30

Plotting Date: 08/11/2025

INCIDENTAL WORK, GRADING

	Station	L/R	Remarks
US 85	27+74		12'x12' – 125' RCBC
US 20	412+22	L	24" - 164' CMP Downspout
US 20	311+25		30" – 57' CMP
US 20	316+05		7'x7' End Sections

TABLE OF ASPHALT CONCRETE PAVEMENT REMOVAL

					Quantity	
	Station	to	Station		(SqYd)	
US 85	27+05		28+45		622	
SD 20	306+15		316+75		4240	
				Total:	4862	_

CORRUGATED METAL PIPE

Corrugated metal pipes will have 2 %-inch x 1/2-inch corrugations for 42-inch and smaller round pipe and 48-inch and smaller arch pipe unless otherwise stated in the plans. Corrugated metal pipes will have 3-inch x 1-inch or 5-inch x 1-inch corrugations for 48-inch and larger round pipe and 54-inch and larger arch pipe unless otherwise stated in the plans.

Areas within the project have soils that are highly corrosive to steel. Corrugated metal pipe in these areas will be polymer coated 14 gauge steel as specified in the Table of Pipe Quantities. Any required connection bands, elbows, tees, crosses, wyes, reducers, and transitions will also be polymer coated. The connection bands will be 24 inches wide. All polymer coated corrugated metal pipe and components will be in conformance with AASHTO M245. Riveted pipe will not be allowed.

All damage to the polymer coating will be repaired in accordance with the manufacturer's recommendations prior to installation of the pipe.

All costs associated with the polymer coating including repair of polymer coating will be incidental to the corresponding CMP contract items.

otted From - TRRC1

CORRUGATED METAL PIPE (CONTINUED)

Metal pipe end sections connected to polymer coated CMP or HDPE will be aluminum-coated (Type 2) in accordance with AASHTO M36 as specified in the Table of Pipe Quantities. All costs associated for gauge, coating, and connections will be incidental to the corresponding CMP End Section contract items

PIPE FOR DOWNSPOUTS

The substitution of Class 2 reinforced concrete pipe, high density polyethylene pipe, polypropylene pipe, or steel reinforced polyethylene pipe for corrugated metal downspout pipes is not allowed.

CLEANOUT FOR CULVERT TREATMENT

This note is to be used if pipe culverts are to be cleaned out in preparation of a following rehabilitation treatment.

Cleanout of pipe culvert will be done in advance of the culvert lining.

Material in existing pipe culvert will be cleaned out by water flushing or other approved methods.

Material removed from the pipe culvert will become property of the Contractor for disposal.

The Contractor will implement appropriate sediment control measures prior to water flushing to prevent discharges from the project boundaries.

The pipe culvert will be cleaned to the satisfaction of the Engineer.

All costs to dewater, clean pipe, and dispose of removed materials will be incidental to the contract unit price per each for "Cleanout Pipe Culvert".

SLIPLINE PIPE

The Contractor will furnish and install slipliner pipe at locations specified in the Table of Slipline Pipe. This work consists of slipping a pipe liner inside existing pipe and grouting the void between the liner and the existing pipe.

The Contractor will submit a proposed procedure for sliplining pipes, including the grouting procedure, to the Engineer at least two weeks prior to beginning this work.

Slipliner pipe will conform to one of the following types:

Closed Profile HDPE:

Closed profile HDPE pipe will meet the requirements of ASTM F894 and will have a cell classification of 345464C in accordance with ASTM D3350. The pipe will have a minimum Ring Stiffness Constant (RSC) classification of 160 lb/ft as defined in ASTM F894. Pipe joints will be in accordance with the pipe manufacturer's recommendations and as approved by the Engineer.

2. Solid Wall HDPE:

Solid wall HDPE pipe will meet the requirements of ASTM F714 (SDR 32.5) and will have a cell classification of 445574C in accordance with ASTM D3350. Pipe joints may be grooved press-on joints or heat fused as approved by the Engineer. Heat fused joints will be fused in accordance with the pipe

manufacturer's recommendations by an experienced operator of the heat fusion equipment.

3. PVC:

PVC pipe will meet the requirements of ASTM F949 or ASTM D1784 with a cell classification of 12454. Pipe joints will be elastomeric seals (gaskets) in accordance with the requirements of ASTM F477.

4. Spirally Wound PVC:

Spirally wound PVC slipliner will meet the requirements of ASTM F949 with minimum pipe stiffness of 46 psi. Pipe joints will be in accordance with the pipe manufacturer's recommendations and as approved by the Engineer.

5. Polypropylene Pipe (PP):

Polypropylene pipe will meet or exceed the requirements of ASTM F2736 (12 inch to 30 inch diameter) or will meet or exceed the requirements of ASTM F2764 (30 inch to 60 inch diameter) with minimum pipe stiffness of 46 psi. Pipe joints will be in conformance with ASTM D3212.

6. Steel Reinforced Polyethylene:

Steel reinforced polyethylene pipe will meet the requirements of ASTM F2562. Pipe joints will be in accordance with the pipe manufacturer's recommendations and as approved by the Engineer.

The diameter specified in the bid item description is the diameter of the existing pipe to be sliplined. The Contractor will provide the largest diameter slipliner pipe that will fit into the existing pipe to maximize flow capacity.

Slipliner pipe will have a smooth interior surface.

Slipliner pipe will be joined into a continuous length with joints that are adequate for pushing, pulling, or winding the liner pipe through the existing pipe. The joints will not allow seepage during pressure grouting. To allow for unrestricted insertion of the liner, the outside diameter of the liner pipe will not be increased at the joints.

Prior to sliplining, the Contractor will clean the existing pipe of all debris, silt, and obstructions to ensure that the slipliner pipe can be inserted, the grout will flow to all voids, and the inserted slipliner pipe will not be set upon or irregularly supported by such material. Cleaning will be accomplished by the use of jet rodding equipment or other approved methods.

The slipliner pipe will be inserted into the existing pipe by pushing, pulling, or winding methods that do not damage the slipliner pipe. The slipliner pipe will be clean and substantially dry before insertion.

To minimize the change in flowline, slipliner pipe will be held down during the grouting operation. This may be accomplished by attaching fasteners or blocks at the top of the pipe, adding weight to the inside of the slipliner pipe, placing multiple grout lifts, or other means as approved by the Engineer.

Bulkheads will be constructed at each end of the pipe. Each bulkhead will be constructed to withstand the pressure of the grouting operation. The bulkhead will extend from the end of the existing pipe inward a minimum depth of 18 inches. The bulkhead will be free from leaks and the exterior surface will be given a smooth trowel finish. The bulkhead at the inlet end will be finished with a 45 degree mitered bevel transition between the existing pipe and the inside of the slipliner pipe with the slipliner pipe face pushed inside the existing pipe face.

Pressure grouting will be done to ensure all the voids are filled between the slipliner pipe and the existing pipe including all breaks or holes in and around the existing pipe. Grouting pressures used will ensure all voids are filled, but

 STATE OF SOUTH DAKOTA
 PROJECT
 SHEET
 TOTAL SHEETS

 NH - P 0042(89)
 B6
 B30

Plotting Date:

Date: 08/21/2025

Revised 08/21/25 DG

do not collapse or deform the slipliner pipe more than 5 percent of the diameter. Multiple grout lifts may be necessary to minimize pipe deflection for 60-inch diameter and larger pipe in accordance with the pipe manufacturer's recommendations.

The grout will be a cellular grout (grout with pre-generated foam) with a minimum 28-day compressive strength of 100 pounds per square inch. If water is not present within the sliplined pipe a low-density grout with a minimum of 30 pounds per cubic foot wet density may be used. When it is not possible to dewater the existing pipe or keep water out of the annular space during grouting, a high-density grout with a minimum of 70 pounds per cubic foot will be used which may include approved sand. The foaming agent used will meet the requirements of ASTM C869 when tested in accordance with ASTM C796.

Both of the cellular grout mix designs will be submitted to the SDDOT Concrete Engineer for approval prior to use. The mix design submittal will include the base cement slurry mix per cubic yard, expansion factor from the foaming agent, and the cellular grout wet density (pounds per cubic foot).

The Contractor will install a bypass valve adjacent to the location where the pressure grouting hose is attached for obtaining samples to be checked for wet density. The wet density of the cellular grout will be checked by the Contractor to verify the proper minimum wet density before the cellular grout filling operations begin and at a minimum once every two hours during production. The SDDOT will document the results of the density checks.

Cellular grout will be wasted until the cellular grout meets the minimum wet density required; however, if 0.5 cubic yards or more of base cement slurry is wasted trying to meet density requirements, then that quantity will not be included for payment.

If grout holes are utilized, cylindrical wooden plugs or other approved plugs will be inserted to plug holes until the grout has set. After the plugs are removed the holes will be filled with concrete.

The quantity of cellular grout was estimated based on void quantity between the slipliner pipe and the existing pipe, and an additional quantity for the void volume outside the existing pipe.

The quantity of base cement slurry ordered will be approved by the Engineer. The quantity of base cement slurry needed will be calculated to the nearest tenth of a cubic yard using the approved mix design, expansion factor of the foaming agent, and estimated amount of cellular grout. The quantity for payment to the nearest tenth of a cubic yard of "Cellular Grout" is a calculated quantity based on the amount of base cement slurry used on the project to the nearest tenth of a cubic yard, expansion factor of the foaming agent, and approved mix design.

All costs for furnishing and installing the slipliner pipe, including work area excavation, backfilling, and incidentals necessary to satisfactorily complete the work will be included in the contract unit price per foot for the corresponding contract item for "Slipline 84" Pipe". Cost to clean the culvert for sliplining will be paid for at the contract unit price per each for "Cleanout for Culvert Treatment".

All costs for furnishing and installing the cellular grout including bulkhead construction, inlet bevel construction, and incidentals necessary to satisfactorily complete the work will be included in the contract unit price per cubic yard for "Cellular Grout".

*The quantity at each location includes an additional 15% to account for void volume outside the existing pipe.

CELLULAR GROUT

The Contractor will submit a proposed grouting procedure to the Engineer at least two weeks prior to beginning this work.

Bulkheads will be constructed at each end of the pipe. Each bulkhead will be constructed to withstand the pressure of the grouting operation. The bulkhead will extend from the end of the existing pipe inward a minimum depth of 18 inches and will be free from leaks.

Pressure grouting will be done to ensure all the voids are filled including all breaks or holes in and around the existing pipe.

The grout will be a cellular grout (grout with pre-generated foam) with a minimum 28-day compressive strength of 100 pounds per square inch. If water is not present within the pipe a low-density grout with a minimum of 30 pounds per cubic foot wet density may be used. When it is not possible to dewater the existing pipe, a high-density grout with a minimum of 70 pounds per cubic foot will be used which may include approved sand. The foaming agent used will meet the requirements of ASTM C869 when tested in accordance with ASTM C796.

Both of the cellular grout mix designs will be submitted to the SDDOT Concrete Engineer for approval prior to use. The mix design submittal will include the base cement slurry mix per cubic yard, expansion factor from the foaming agent, and the cellular grout wet density (pounds per cubic foot).

The Contractor will install a bypass valve adjacent to the location where the pressure grouting hose is attached for obtaining samples to be checked for wet density. The wet density of the cellular grout will be checked by the

Contractor to verify the proper minimum wet density before the cellular grout filling operations begin and at a minimum once every two hours during production. The SDDOT will document the results of the density checks.

Cellular grout will be wasted until the cellular grout meets the minimum wet density required; however, if 0.5 cubic yards or more of base cement slurry is wasted trying to meet density requirements, then that quantity will not be included for payment.

If grout holes are utilized, cylindrical wooden plugs or other approved plugs will be inserted to plug holes until the grout has set. After the plugs are removed the holes will be filled with concrete.

The quantity of cellular grout was estimated based on volume of the existing pipe and voids outside the existing pipe.

The quantity of base cement slurry ordered will be approved by the Engineer. The quantity of base cement slurry needed will be calculated to the nearest

tenth of a cubic yard using the approved mix design, expansion factor of the foaming agent, and estimated amount of cellular grout. The quantity for payment to the nearest tenth of a cubic yard of "Cellular Grout" is a calculated quantity based on the amount of base cement slurry used on the project to the nearest tenth of a cubic yard, expansion factor of the foaming agent, and approved mix design.

All costs for furnishing and installing the cellular grout including bulkhead construction, inlet bevel construction, and incidentals necessary to satisfactorily complete the work will be included in the contract unit price per cubic yard for "Cellular Grout".

REINFORCED CONCRETE PIPE

High sulfate levels are likely to be encountered on this project. The type of cement will be either type V or type II with 20% to 25% Class F Modified Fly Ash substituted for cement in accordance with Section 605 of the Specifications. The Water/Cementitious material ratio will not exceed 0.45 as defined in Section 460.3 C of the Specifications. The mix will be as per the fabricator's design; however, minimum compressive strength will not be less than 4500 psi at 28 days. The pipe must be marked in an acceptable way to designate meeting requirements for sulfate resistance.

CONCRETE PIPE CONNECTIONS

Pipe connections to existing pipes, manholes, junction boxes, and drop inlets will be done by breaking a hole into the existing structure and inserting the pipe. A concrete collar will then be poured around the pipe in the area of the connection.

When it is not possible to use a normal pipe joint (male-female ends), connections to existing pipe will be made by placing a 2' wide by 6" thick M6 concrete collar around the outside of the connection. The concrete collar will be reinforced with 6x6 W2.9 x W2.9 wire mesh.

All costs for constructing the concrete collars including materials and labor will be incidental to the contract unit price per foot for the corresponding pipe contract item.

1	STATE OF	PROJECT	SHEET	TOTAL SHEETS
ı	SOUTH	NUL D 0040(00)		SHEETS
ı	DAKOTA	NH - P 0042(89)	B7	B30

Plotting Date: 08/11/2025

PIPE COVER

The earthen subgrade cover for some pipe installations is less than one foot. The Contractor will take the necessary precautions to ensure the structural properties of the pipes are not damaged after installation and prior to the placement of final surfacing. Any additional costs for preventing damage to these pipes will be incidental to the contract unit price per foot for the corresponding pipe installation contract item.

TEMPORARY FENCE

The Contractor will verify the location of the temporary fence with the landowner prior to installation of the fence.

TABLE OF PVC COATED BANK AND CHANNEL PROTECTION GABIONS AND DRAINAGE FABRIC

			PVC Coated Bank	Type B
			and Channel	Drainage
			Protection Gabion	Fabric
Highway	Station	L/R	(CuYd)	(SqYd)
US20	412+22	L	4.5	15
US20	316+05	R _	27.0	70
		Totals:	31.5	85

		Remove	Remove High
		4 Cable	Tension Cable
		Tension	Guardrail
		Cable	Anchor
Location		Guardrail	Assembly
		(Ft)	(Each)
Structure No. 10-169-215			
Begin Bridge Lt.		395	2
Begin Bridge Rt.		395	2
	Totals:	790	4

TABLE OF SUPERELEVATION

Station	to	Station		
306+15		311+70	-	Normal Crown Section
311+70		313+35	-	Superelevation Transition
313+35		316+33	-	5730' Radius Curve Right
				.034'/' Superelevation Rate
				Point of Rotation at Centerline
316+33		316+75	-	Superelevation Transition
316+75			-	Normal Crown Section

TABLE OF CONSTRUCTION STAKING
(See Special Provision for Contractor Staking)

						G	rade Staking	3			
Roadway and Description	Begin Station	End Station	Number of Lanes	Length (Ft)	Length (Mile)	Lane Factor	*Sets of Stakes	**Grade Staking Quantity (Mile)	Miscellaneous Staking Quantity (Mile)	Slope Staking Quantity (Mile)	Structure Staking Quantity (Each)
US 85 (2 Lanes AC Pavement)	27+05	28+45	2	140	0.027	1	1	0.027	0.027	0.027	
Str No 10-169-215											1
SD 20 MRM 50 (2 Lanes AC Pavement)	306+15	316+75	2	1060	0.201	1	1	0.201	0.201	0.201	
							Totals:	0.228	0.228	0.228	1

^{1 =} Blue Top Stakes Only (Asphalt Concrete Pavement)2 = Blue Top and Paving Hub Stakes (PCC Pavement)

TABLE OF PIPE QUANTITIES

		Reinfor	ced Cor	ncrete				Corruga	ated Me	tal								
		Circula	r		Circula	Circular Flared End		Circular		Circular ⊟bow		Circular Sloped End		d End	Circular Flared End		End	
		48" Cl. 2			48"			24" 14 Ga			24"		24"			24"	78"	
Station	Offset (L/R)	Ft			Each			Ft			7.5∘ Each		Each			Each	Each	
US20 MRM 16.00+0.803																		
412+17 - 118.1' L to	413+74 - 47.7' L							160			2		1			1		
US20 MRM 50.00+0	0.248																	
311+13 - 48.3' L to 3	311+13 - 47.9' R	80			2													
311+37 - 48.3' L to 3	311+37 - 47.9' R	80			2													
316+05 - 69.5' L to 3	316+05 - 69.5' R																2	
	Total:	160			4			160			2		1			1	2	

Plotting Date:

08/21/2025

Revised 08/21/25 DG

^{**} Grade Staking Quantity = (Length) x (Lane Factor) x (Sets of Stakes)

TABLE OF FENCE QUANTITIES

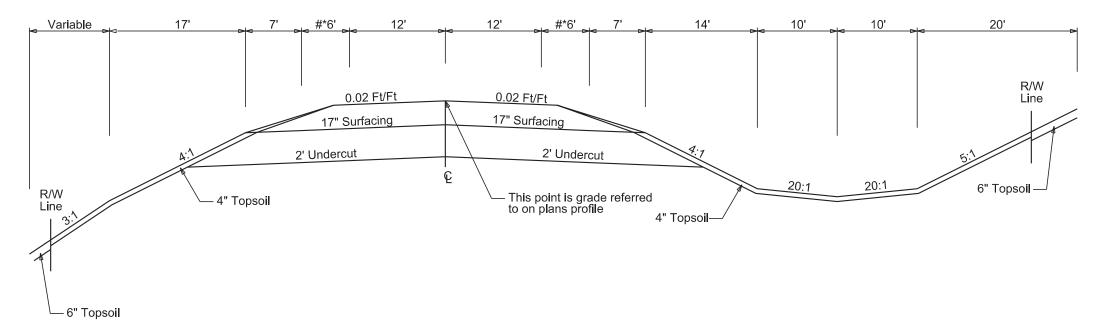
				Righ	ght-of-Way Fence		Ter	nporary Fe	nce	Post F	Panels	Gates (for informa	tion purpos	es only)	Fen	ce	
		Side (L/R)	Туре 2					Type 2			2 Post	3 Post	Barb Wire 16'				Remove	
Station to	Station		(Ft)					(Ft)			(Each)	(Each)	(Each)				(Ft)	
US85 24+69	30+80	L	619					653			4	4					619	
US85 27+00	28+50	R	230					275			4	3					230	
US20 313+00	316+75	L	375					545				3	1				401	
US20 315+50	316+75	R	125					151			1	1					225	
US20 409+00	414+50	L	550									2					550	
		TOTALS:	1899					1624			9	13	1				2025	

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	NH - P 0042(89)	B9	B30

Plotting Date: 08/11/2025

Post Type and Sequence:

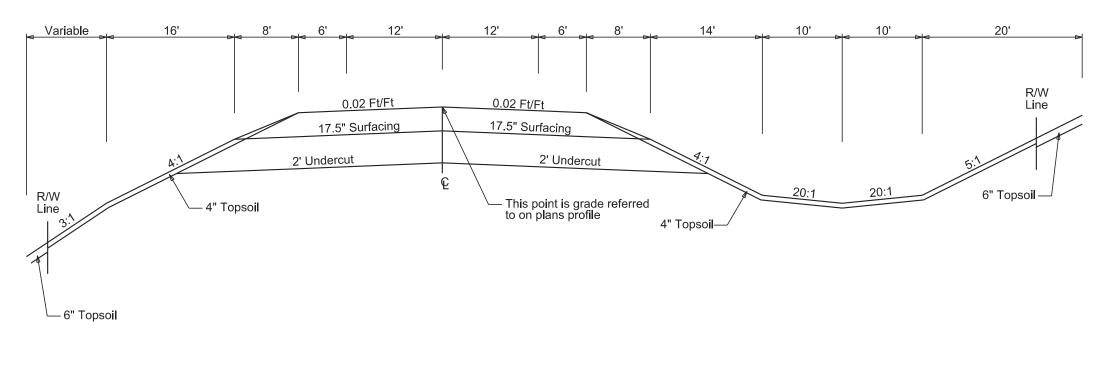
Right-of-way fence will be constructed using alternate wood and steel posts except


as noted.

TYPICAL GRADING SECTION

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	NH - P 0042(89)	B10	В30

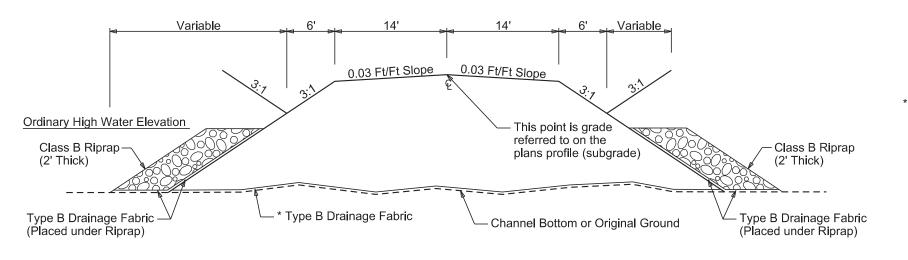
Plotting Date: 08/11/2025


SD 20 - MRM 50.00+0.248 306+15 to 316+75

Ultimate Future Shoulder Width

Transitions:
* 306+15 to 306+50: 2' to 6' 316+40 to 316+75: 6' to 2'

US 85 - MRM 75.00+0.286 27+05 to 28+45


TYPICAL GRADING SECTION

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	NH - P 0042(89)	B11	В30

Plotting Date:

08/11/2025

Traffic Diversions div27 - 23+26.65 to 32+21.22 ML - 0+00 to 9+49.29 Diversion

Place Type B Drainage Fabric under embankment that is placed in wetland areas as shown in Section B.

TRRC11903

HORIZONTAL ALIGNMENT DATA

1	STATE OF	PROJECT	SHEET	TOTAL SHEETS
ı	SOUTH	NH - P 0042(89)	D.10	
	DAKOTA	1411-1-0042(09)	B12	B30

Plotting Date: 08/11/2025

US 85 - MRM 75.286

<u>Type</u>	Station			<u>Northing</u>	Easting
POB	10+00.00			410595.727	1005299.327
		TL= 3549.05	N 61°39'50" E		
POE	45+49.05			412280.260	1008423.123

SD 20 – MRM 16.803

<u>Type</u>	<u>Station</u>			<u>Northing</u>	<u>Easting</u>
POB	400+00.00			657111.427	1006284.149
		TL= 2053.03	S 87°32'56" E		
POE	420+53.03			657023.627	1008335.302

SD 20 - MRM 50.00+0.248

Station			<u>Northing</u>	<u>Easting</u>
300+00.00			638573.014	1166625.261
	TL= 1301.57	N 66°59'14" E		
313+01.57			639081.845	1167823.247
323+10.28	R = 5730.00	Delta = 19°58'06" R	639476.189	1168751.687
332+98.54			639529.765	1169758.978
	TL= 1.56	N 86°57'19" E		
333+00.10			639529.848	1169760.538
3	313+01.57 323+10.28 332+98.54	TL= 1301.57 313+01.57 323+10.28 R = 5730.00 332+98.54 TL= 1.56	TL= 1301.57 N 66°59'14" E 313+01.57 323+10.28 R = 5730.00 Delta = 19°58'06" R 332+98.54 TL= 1.56 N 86°57'19" E	300+00.00 638573.014 TL= 1301.57 N 66°59'14" E 313+01.57 639081.845 323+10.28 R = 5730.00 Delta = 19°58'06" R 639476.189 332+98.54 639529.765 TL= 1.56 N 86°57'19" E

div27

Type	Station			<u>Northing</u>	<u>Easting</u>
PC	0+00.00			411225.413	1006467.017
PI	1+22.27	R = 400.00	Delta = 33°59'38" L	411283.447	1006574.635
PRC	2+37.32			411391.733	1006631.414
PI	5+07.06	R = 400.00	Delta = 67°59'15" R	411630.625	1006756.676
PRC	7+11.96			411604.033	1007025.103
PI	8+34.23	R = 400.00	Delta = 33°59'38" L	411591.979	1007146.776
PT	9+49.29			411650.013	1007254.394

CONTROL DATA

	SHEET	TOTAL SHEETS
NH - P 0042(89)	B13	B30
	NH - P 0042(89)	

Plotting Date: 08/11/2025

	HORIZONTAL AND VERTICAL CONTROL POINTS							
POINT	STATION	OFFSET	DESCRIPTION	NORTHING	EASTING	ELEVATION		
20 005.67			REFERENCE MARKER AC7856	650775.714	959315.578	3136.74		
20 016.45			REFERENCE MARKER AI3964	657288.104	1005492.112	3082.44		
20 018.00			REFERENCE MARKER AI3965	656875.084	1013587.899	3083.67		
20 043.54			REFERENCE MARKER AC7918	639844.008	1134322.23	2951.53		
20 049.20			REFERENCE MARKER AI4014	637035.806	1162967.738	3137.98		
20 050.20	313+17.77	98.63	REFERENCE MARKER AI4015	638997.266	1167876.473	3085.49		
20 051.10			REFERENCE MARKER AI4016	639557.246	1172436.781	3074.02		
20 061.46			REFERENCE MARKER AC7943	632416.333	1225548.523	2974.94		
85 066.30			REFERENCE MARKER AI0149	383973.075	969372.768	3037.30		
85 074.90			REFERENCE MARKER AI0153	410612.587	1005120.956	3020.37		
85 075.85			REFERENCE MARKER AI0154	412878.649	1009324.026	3027.34		
85 076.98			REFERENCE MARKER AC7960	415585.573	1014759.662	3111.92		
85 091.85			REFERENCE MARKER AI0168	476529.533	1052139.451	2930.26		
A 32			REFERENCE MARKER QT0327	649709.867	1060454.084	2884.69		
J32 RESET			REFERENCE MARKER QT0366	657085.928	1009263.736	3058.90		

...\rd\prj\bute07NU\DataHoriz.dg

LEGEND

— он —

0

 \odot

PS

☐

<u>^</u>

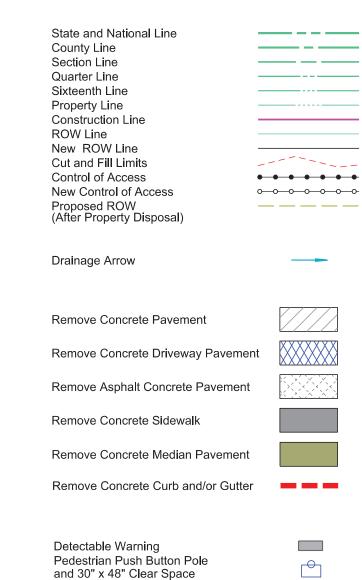
 ∞

STATE OF	PROJECT	SHEET	TOTAL SHEETS
SOUTH DAKOTA	NH - P 0042(89)	B14	B30

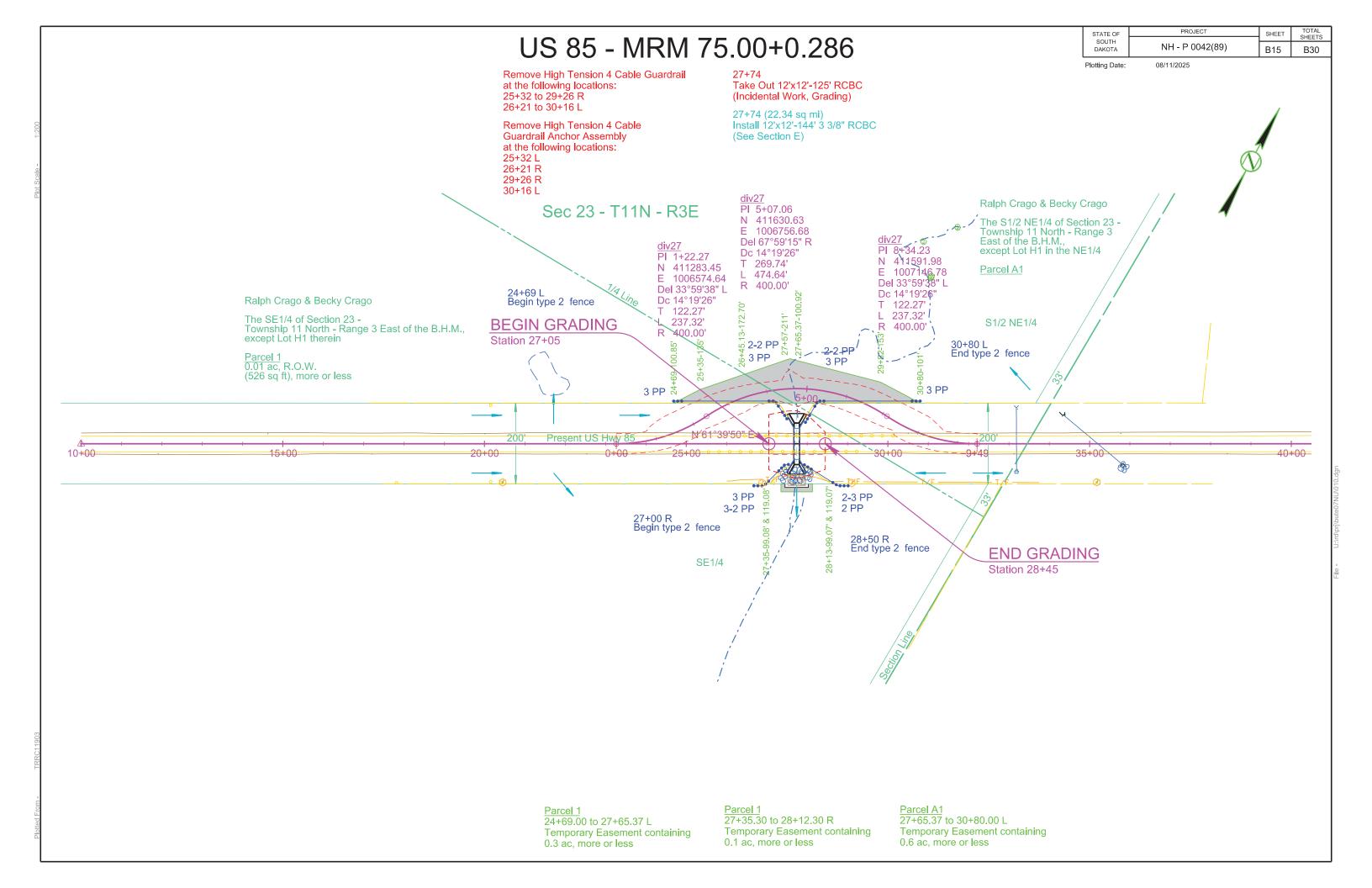
Plotting Date: 08/11/2025

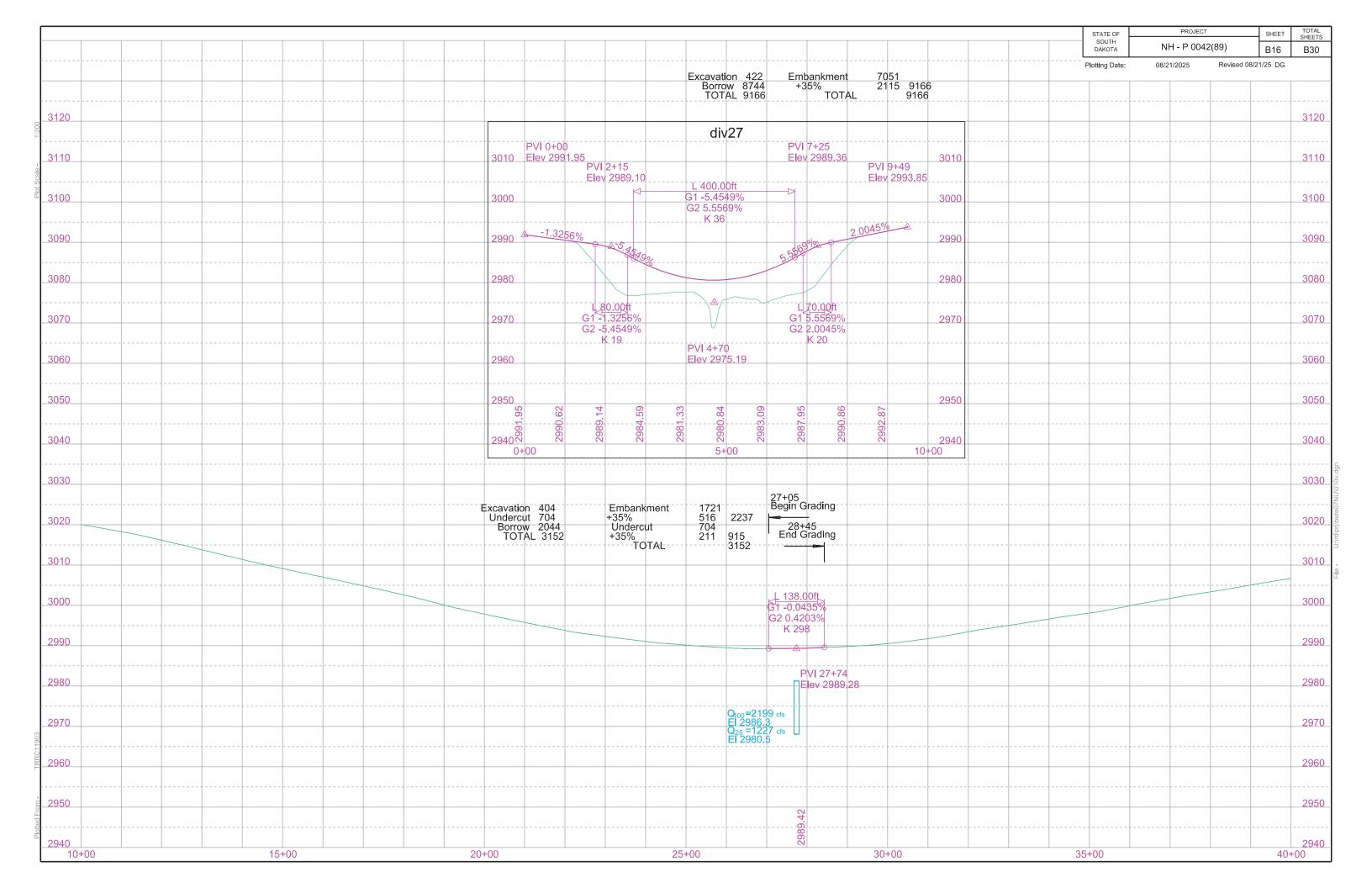
Anchor		\leftarrow
Antenna		Δ Δ
Approach		
Assumed Corner		<u></u>
Azimuth Marker		<u> </u>
BBQ Grill/ Fireplace		
Bearing Tree		(37)
Bench Mark		A
Box Culvert		
Bridge		
Brush/Hedge		ಹಾವ
Buildings		
Bulk Tank		
Cattle Guard		
Cemetery		+
Centerline		
Cistern		©
Clothes Line		
Concrete Symbol		200
Control Point		A
Creek Edge		
Curb/Gutter		=======
Curb		
Dam Grade/Dike/Levee		
Deck Edge		
Ditch Block		<u> 2008</u>
Doorway Threshold		
Drainage Profile		
Drop Inlet		
Edge Of Asphalt		
Edge Of Concrete		
Edge Of Gravel		
Edge Of Other		
Edge Of Shoulder		
Electric Transformer/Power Junction	า Box	P
Fence Barbwire		
Fence Chainlink		¬,′,′-
Fence Electric	,	— 5 —— 5 —
Fence Miscellaneous		
Fence Rock		
Fence Snow		
Fence Wood		
Fence Woven		
Fire Hydrant		& ▶
Flag Pole Flower Bed		4 4 4 A
Gas Valve Or Meter		7777
Gas Pump Island		<u>~</u>
Gas Fump Island Grain Bin		(iii)
Guardra il		
Gutter		2222
Guy Pole		•
Haystack		↓ ————————————————————————————————————
Highway ROW Marker		
Interstate Close Gate		₹ुँ
Iron Pin		©
Irrigation Ditch		
Lake Edge		

Lake Edge


Lawn Sprinkler

Mailbox Manhole Electric
Manhole Gas
Manhole Gas Manhole Miscellaneous
Manhole Sanitary Sewer
Manhole Storm Sewer
Manhole Telephone
Manhole Water
Merry-Go-Round
Microwave Radio Tower
Miscellaneous Line
Miscellaneous Property Corner Miscellaneous Post
Overhang Or Encroachment
Overhead Utility Line
Parking Meter
Pedestrian Push Button Pole
Pipe With End Section
Pipe With Headwall
Pipe Without End Section
Playground Slide
Playground Swing Power And Light Pole
Power And Telephone Pole
Power Meter
Power Pole
Power Pole And Transformer
Power Tower Structure
Propane Tank
Property Pipe
Property Pipe With Cap Property Stone
Public Telephone
Railroad Crossing Signal
Railroad Milepost Marker
Railroad Profile
Railroad ROW Marker
Railroad Signs
Railroad Switch
Railroad Track Railroad Trestle
Rebar
Rebar With Cap
Reference Mark
Retaining Wall
Riprap
River Edge
Rock And Wire Baskets
Rockpiles
Satellite Dish
Septic Tank Shrub Tree
Sidewalk
Sign Face
Sign Post
Slough Or Marsh
Chrina


Spring


Stream Gauge

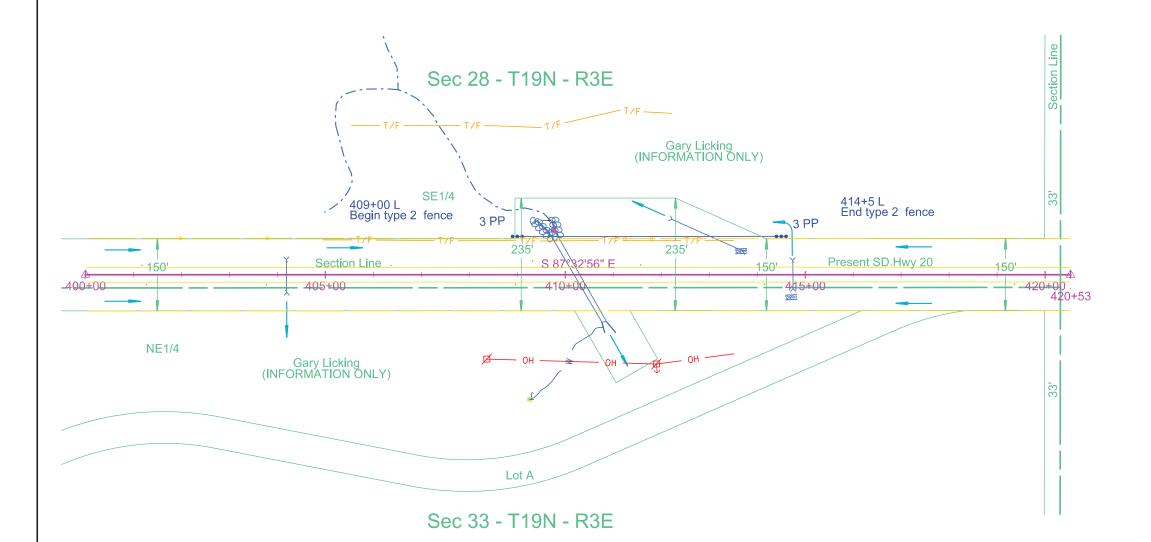
Street Marker

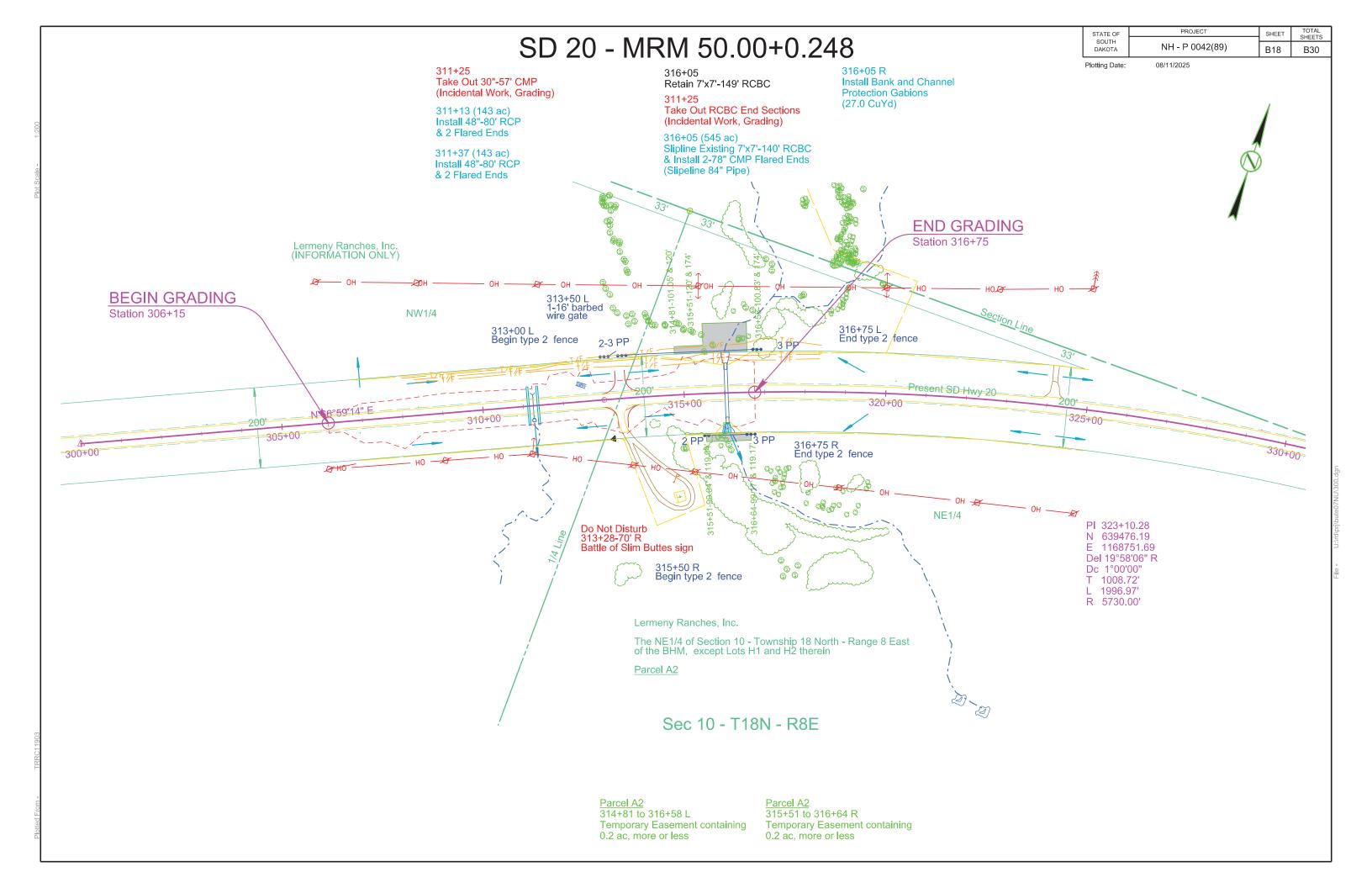
with 1.5% slope

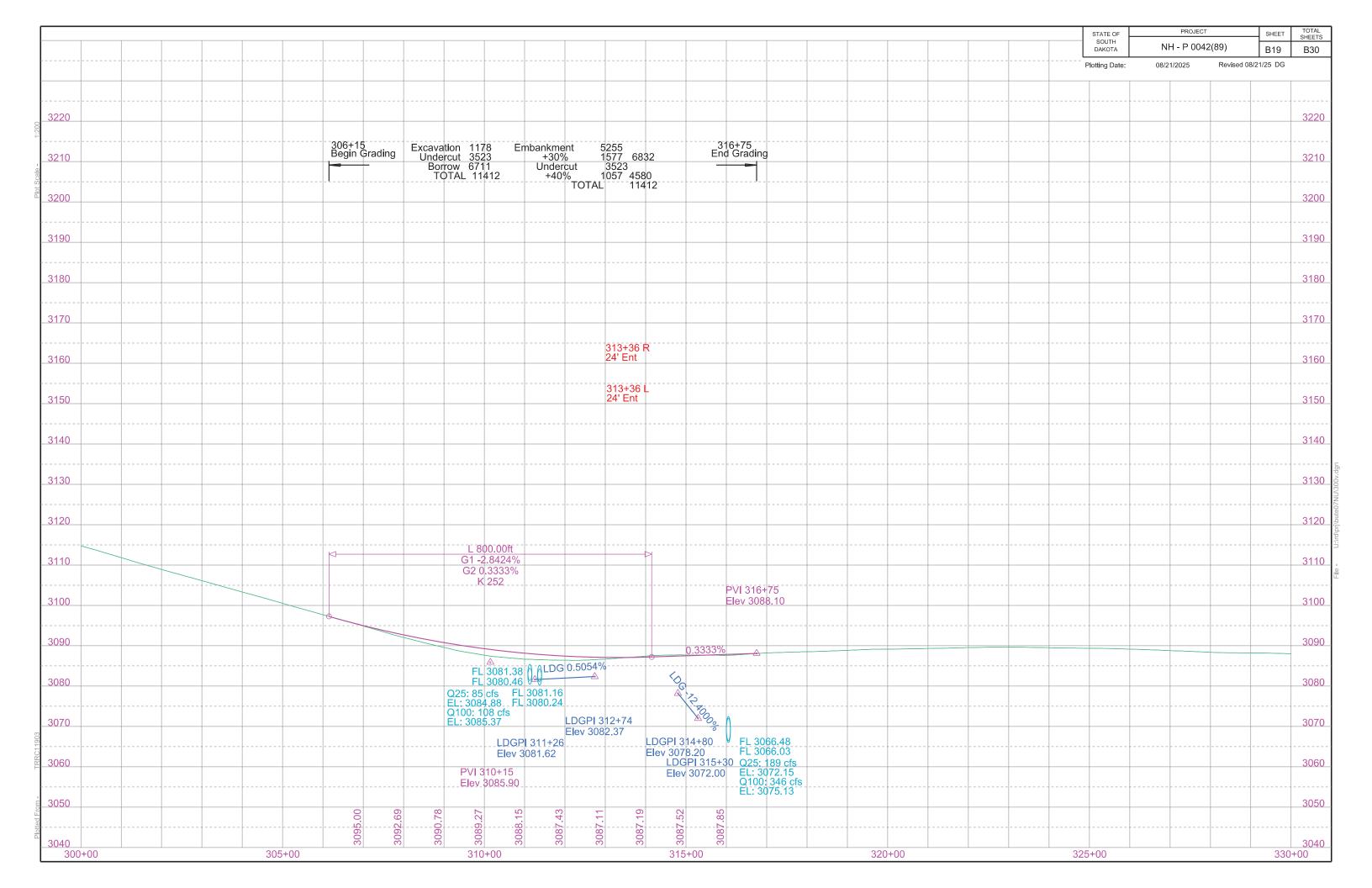
410+24 Retain 8'x8'-271' RCBC 412+22 L Take Out 24"-164' CMP Downspout (Incidental Work, Grading)

SD 20 - MRM 16.00+0.803

TOTAL SHEETS STATE OF SOUTH DAKOTA PROJECT SHEET NH - P 0042(89) B17 B30

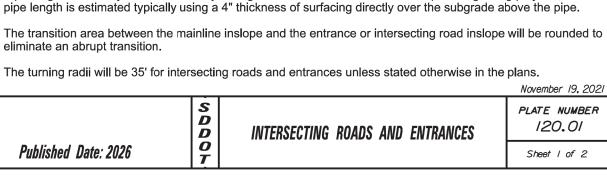

Plotting Date:


08/11/2025


410+24 L Replace 8'x8' RCBC Inlet Apron (See Section E)

412+17-118.1' L to 413+74-47.7' L Install 24" - 160' CMP (24' & 112' & 24') And 2 - 7.5°Elbows & 1 CMP Sloped End & 1 CMP Flared End

412+23 L Install Bank and Channel Protection Gabions (4.5 CuYd)


Surfacing-

Mainline

မှ

Finished -

Shoulder

PERSPECTIVE OF ENTRANCE

ELEVATION VIEW

(Entrance)

SECTION A-A

(Entrance and Intersecting Road)

The elevation view above is typical for either a ditch cut or fill section. Entrances that vary from above should

Pipe length will be adjusted if necessary during construction to obtain the 6:1 slope. For grading projects, the

Slope 2%

Slope 2%

The ditch section shown above in the perspective view is only for illustrative purpose.

Original groundor existing profile

**Slope

4" surfacing or thickness

farm/residential entrances.

10:1 without pipe

in the plans.

** Entrance maximum slope is typically

* The finished surfacing width is stated

width is 4' wider than the finished surfacing width unless stated otherwise

elsewhere in the plans. The subgrade

10:1 for field entrances and 15:1 for

as specified in plans

Transition to existing profile or constructto limits shown on cross sections.

*** 2% (Max.)

-Subgrade

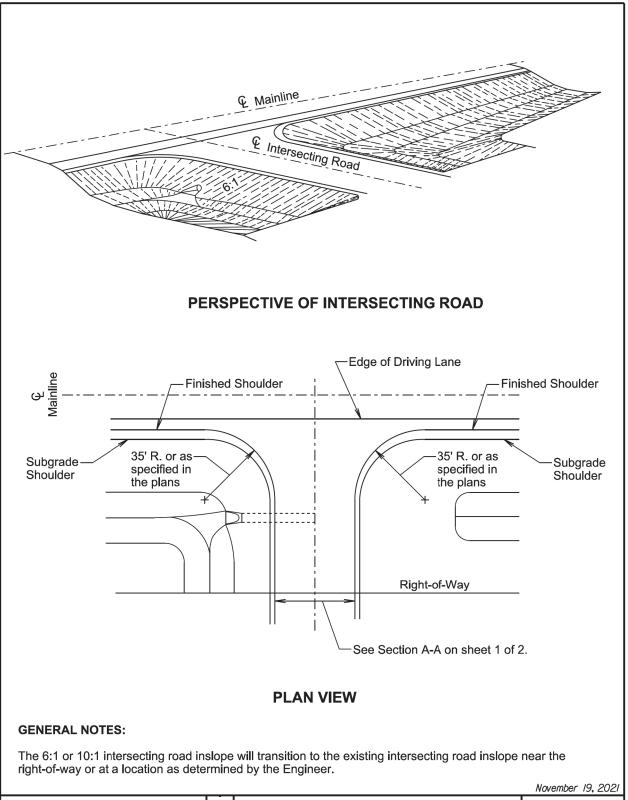
Shoulder

Mainline Ditch Mainline Inslope-

*** 2% When on the inside of superelevation and

4" surfacing or thickness -

as specified in plans

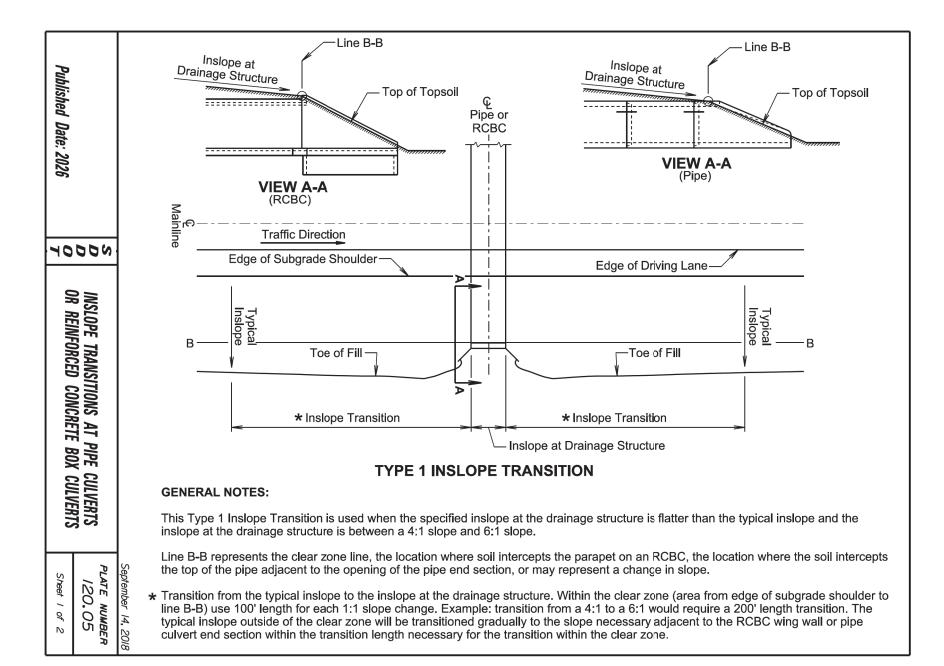

GENERAL NOTES:

be specified in the plans.

0% or flat when on outside of superelevation.

PROJECT TOTAL SHEETS STATE OF SHEET NH - P 0042(89) B20 B30 DAKOTA

Plotting Date: 08/11/2025



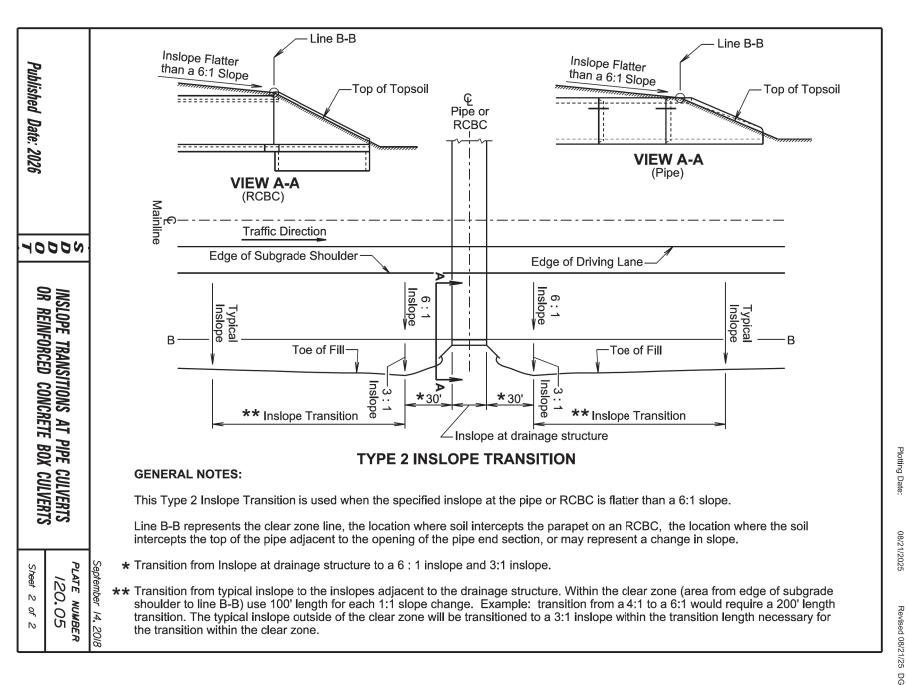
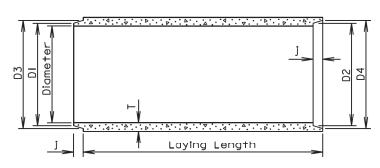

SDDO INTERSECTING ROADS AND ENTRANCES Published Date: 2026

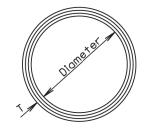
PLATE NUMBER

120.01

Sheet 2 of 2

PROJECT STATE OF SHEET TOTAL SHEETS NH - P 0042(89) B22 B30 DAKOTA


Plotting Date:


08/11/2025

TOLERANCES IN DIMENSIONS

Diameter: $\pm 1.5\%$ for 24" Dia. or less and $\pm 1\%$ or $\frac{3}{8}$ " whichever is more for 27" Dia. or greater. Diameters at joints: \pm $\frac{3}{16}$ " for 30" Dia. or less and \pm $\frac{1}{4}$ " for 36" or greater. Length of joint (j): \pm $\frac{1}{4}$ ".

Wall thickness (T): not less than design T by more than 5% or $\frac{3}{16}$ ", whichever is greater. Laying length: shall not underrun by more than $\frac{1}{2}$ ".

LONGITUDINAL SECTION

END VIEW

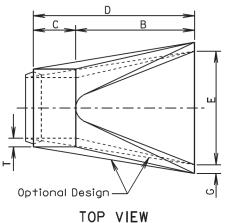
GENERAL NOTES:

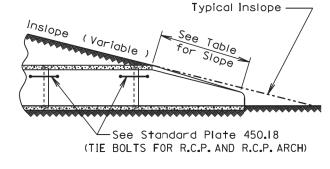
Construction of R.C.P. shall conform to the requirements of Section 990 of the Specifications.

Not more than 2 four-foot sections shall be permitted near the ends of any culvert. Four-foot lengths shall be used only to secure the required length of culvert.

Diam. (in.)	Approx. Wt./Ft. (Ib.)		J (in.)	DI (in.)	D2 (in.)	D3 (in.)	D4 (in.)
12	92	2	13/4	131/4	13%	13%	141/4
15	127	21/4	2	161/2	16%	171/4	175/ ₈
18	168	21/2	21/4	195/8	20	20¾	20¾
21	214	23/4	21/2	22 1/8	231/4	23¾	241/8
24	265	3	23/4	26	26¾	27	273/8
27	322	31/4	3	291/4	295/8	30 ¹ / ₄	305/8
30	384	31/2	31/4	323/8	32¾	331/2	33 1/8
36	524	4	3¾	38¾	391/4	40	401/2
42	685	41/2	4	451/8	45%	461/2	47
48	867	5	41/2	511/2	52	53	531/2
54	1070	51/2	41/2	57%	58¾	59¾	59%
60	1296	6	5	641/4	64¾	66	661/2
66	1542	61/2	51/2	70%	711/8	721/2	73
72	1810	7	6	77	771/2	79	791/2
78	2098	71/2	61/2	83%	83%	85%	861/8
84	2410	8	7	89¾	901/4	921/8	925/8
90	2740	81/2	7	95¾	961/4	981/8	985/8
96	2950	9	7	1021/8	1025/8	1041/2	105
102	3075	91/2	71/2	109	1091/2	1111/2	112
108	3870	10	71/2	1151/2	116	118	1181/2

June 26, 2015


Published Date: 2026


S D D O T

REINFORCED CONCRETE PIPE

PLATE NUMBER 450.01

Sheet I of I

SLOPE DETAIL

GENERAL NOTES:

Lengths of concrete pipe shown on plan sheets are between flared ends only.

Construction of R.C.P. Flared End shall conform to the requirements of Section 990 of the Specifications.

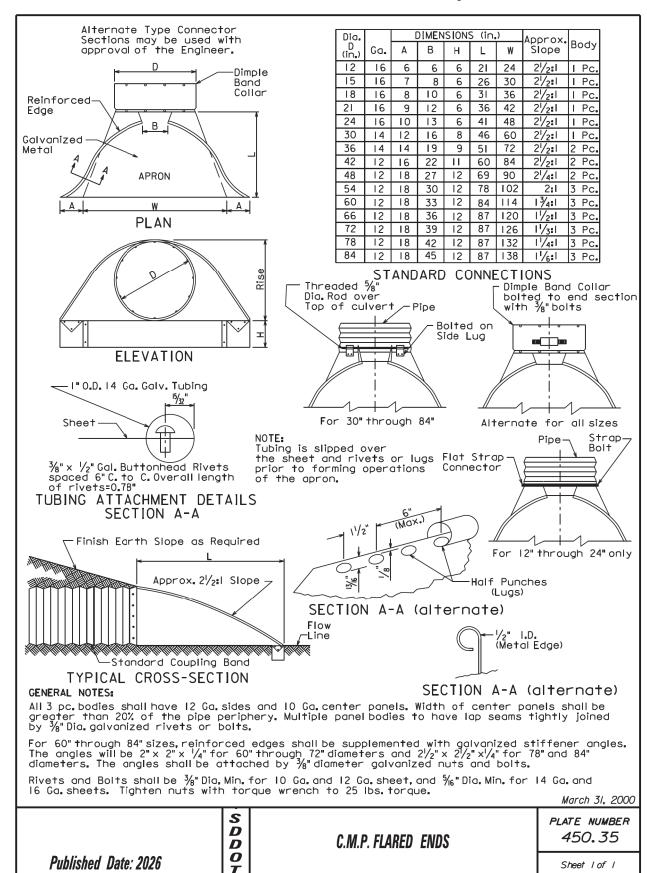
LONGITUDINAL SECTION

—Tongue (Inlet) or

Groove (Outlet)

Dia. (in.)	Approx. Wt. of Section (lbs.)	Approx. Slope (X to Y)	T (in.)	A (in.)	B (in.)	C (in.)	D (in.)	E (in.)	G (in.)	R (in.)
12	530	2.4: I	2	4	24	48 1/8	721/8	24	2	11/2
15	740	2.4: I	21/4	6	27	46	73	30	21/4	11/2
18	990	2.3: I	21/2	9	27	46	73	36	21/2	11/2
21	1280	2.4: I	23/4	9	36	371/2	731/2	42	23/4	11/2
24	1520	2.5: I	3	91/2	431/2	30	731/2	48	3	11/2
27	1930	2.5: I	31/4	101/2	491/2	24	731/2	54	31/4	11/2
30	2190	2.5: I	31/2	12	54	19¾	73¾	60	31/2	11/2
36	4100	2.5: I	4	15	63	34¾	973/4	72	4	11/2
42	5380	2.5: I	41/2	21	63	35	98	78	$4\frac{1}{2}$	11/2
48	6550	2.5: I	5	24	72	26	98	84	5	11/2
54	8240	2 : I	51/2	27	65	33 ¹ / ₄	981/4	90	51/2	11/2
60	8730	1.9:1	6	35	60	39	99	96	5	11/2
66	10710	1.7:1	61/2	30	72	27	99	102	51/2	11/2
72	12520	1.8:1	7	36	78	21	99	108	6	11/2
78	14770	1.8:1	71/2	36	90	21	111	114	61/2	11/2
84	18160	1.6: I	8	36	901/2	21	1111/2	120	61/2	11/2
90	20900	I . 5: I	81/2	41	871/2	24	1111/2	132	61/2	6

June 26, 2015


S D D O Published Date: 2026

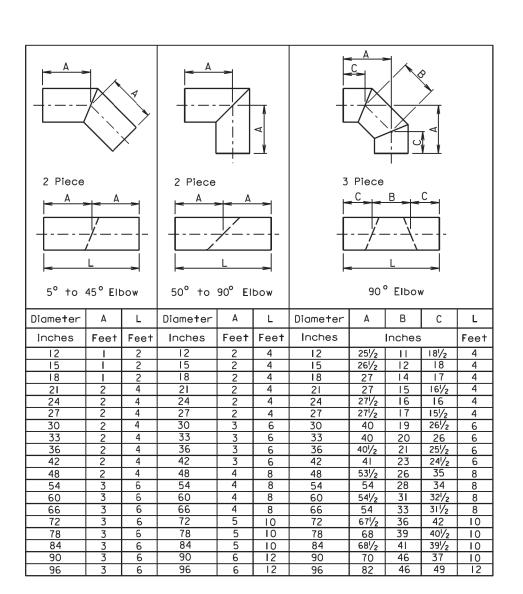

R. C. P. FLARED ENDS

PLATE NUMBER 450.10

Sheet I of I

Plotting Date:

FABRICATED ELBOW LENGTHS FOR ALL CORRUGATIONS

GENERAL NOTES:

All dimensions shown are nominal.

L = Linear Feet of C.M.P. required to fabricate fitting.

June 26, 2001

PLATE NUMBER D *450.32* C.M.P. FABRICATED LENGTHS FOR ELBOWS \overline{D} 0 Published Date: 2026 Sheet | of |

48" (Max.) Spacing

Safety Bars (Typ.) *

*Number of bars required will vary depending

on the length of the end section.

ELEVATION VIEW

When bars are specifiedin the plans, the cross drainage bar is required when span is over 30".

Cross bar to be welded to parallel

bars to make one

piece unit.

 $1"x\%_{16}$ Slotted Hole

½" Diameter Hex. Head Bolts (Typ.) 5¼"

3" Galvanized Pipe: Flatten end, then bend outside 4" to

Galvanized Steel Rod or No. 4

Corrugation sized

Galvanized Reinforcing Bar

to fit pipe.

Pipe Size

Galvanized

April 8, 2025

450.37

strap

match end section sides.

DETAIL OF SAFETY BARS

SECTION A-A

SECTION B-B

 $-\frac{7}{16}$ " (Min.) Diameter

1	STATE OF	PROJECT	SHEET	TOTAL SHEETS
	SOUTH DAKOTA	NH - P 0042(89)	B24	В30

Plotting Date:

08/11/2025

,										
ARCH C.M.P. SLOPED ENDS										
Equiv.	(Incl	nes)	(Min.)	Thick.	Dim	ensi	ons (Inches)	L Dime	ensions
Dia. (Inch)	Span	Rise	Inch	Gage	Α	Н	W	Overall Width	Slope	Length (Inch)
18	21	15	.064	16	8	6	27	43	4:1	20
21	24	18	.064	16	8	6	30	46	4:1	32
24	28	20	.064	16	8	6	34	50	4:1	40
30	35	24	.079	14	12	9	41	65	4:1	56
36	42	29	.109	12	12	9	48	72	4:1	76
42	49	33	.109	12	16	12	55	87	4:1	92
48	57	38	.109	12	16	12	63	95	4:1	112
54	64	43	.109	12	16	12	70	102	4:1	132
60	71	47	.109	12	16	12	77	109	4:1	148
72	83	57	.109	12	16	12	89	121	4:1	188

CIRCULAR C.M.P. SLOPED ENDS								
Pipe	(Min.)	Thick.	Dir	nen	sior	ns (Inches)	L Dime	ensions
Dia. (Inch)	Inch	Gage	Α	Н	W	Overall Width	Slope	Length (Inch)
15	.064	16	8	6	21	37	4:1	20
18	.064	16	8	6	24	40	4:1	32
21	.064	16	8	6	27	43	4:1	44
24	.064	16	8	6	30	46	4:1	56
30	.109	12	12	9	36	60	4:1	80
36	.109	12	12	9	42	66	4:1	104
42	.109	12	16	12	48	80	4:1	128
48	.109	12	16	12	54	86	4:1	152
54	.109	12	16	12	60	92	4:1	176
60	.109	12	16	12	66	98	4:1	200

GENERAL NOTES:

Safety bars will be provided when specified in the plans.

Sloped ends will be fabricated from galvanized steel and will conform to the requirements of the Specifications.

Safety bars will be fabricated from steel schedule 40 pipe in conformance with ASTM A53, grade B or HSS 3.5x.216 in conformance with ASTM A500, grade B or C.

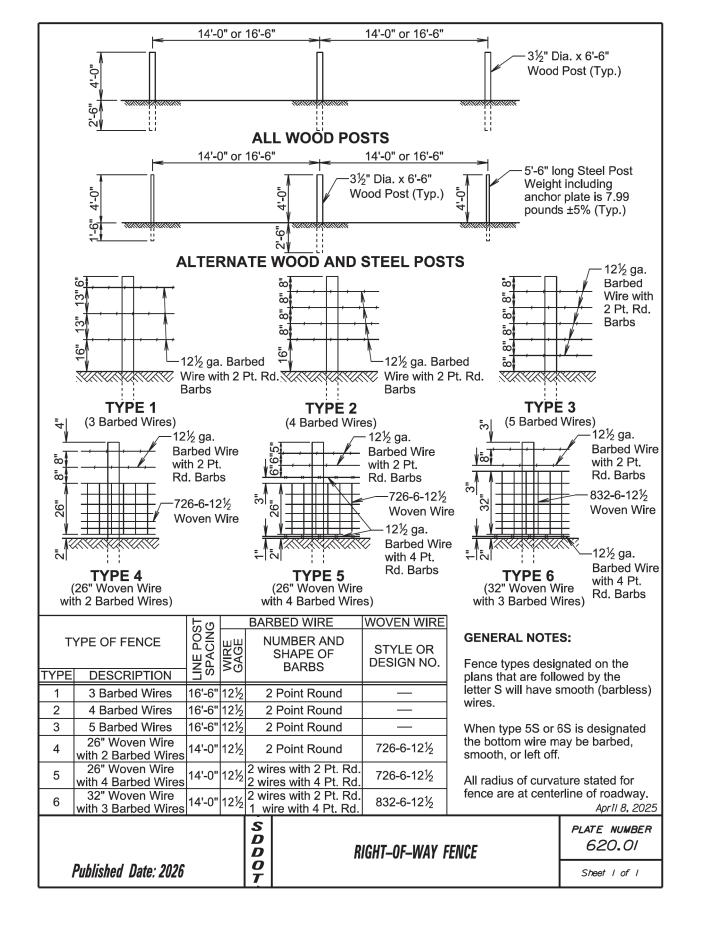
Slotted holes for safety bar attachment will be provided for all end sections.

Attachment to circular pipes 15" through 24" diameter will be made with Type #1 straps. All other sizes will be attached with Type #2 rods and lugs.

When stated in the plans, optional toe plate extension will be punched and bolted to end section apron lip with %" diameter galvanized bolts. Steel for toe plate extension will be same gauge as end section. Dimensions will be overall width less 6" by 8" high.

Installation will be performed in accordance with the Specifications.

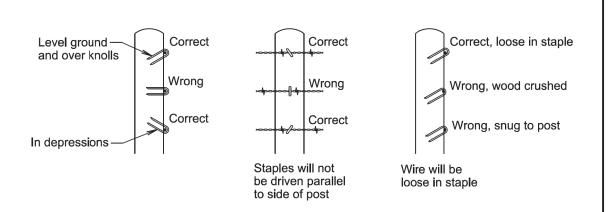
Cost of all work and materials required for fabrication and installation of sloped ends will be incidental to the bid items for the various sizes of sloped ends.


April 8, 2025

S D D C.M.P. SLOPED ENDS 0 Published Date: 2026

PLATE NUMBER *450.37*

Sheet 2 of 2



PROJECT. TOTAL SHEETS STATE OF SHEET NH - P 0042(89) B25 DAKOTA B30

Plotting Date:

08/11/2025

STAPLE INSTALLATION

GENERAL NOTES:

The Right-of-Way fence will consist of barbed wire or a combination of woven wire and barbed wire. The barbed wire and/or woven wire will be fastened to all wood posts or fastened to alternating wood and steel posts. Only wood posts will be used for brace panels. Gates will be of the type designated in the plans or as otherwise directed by the Engineer. Fence will be constructed conforming to the details on the standard plates and in the plans unless otherwise directed by the Engineer.

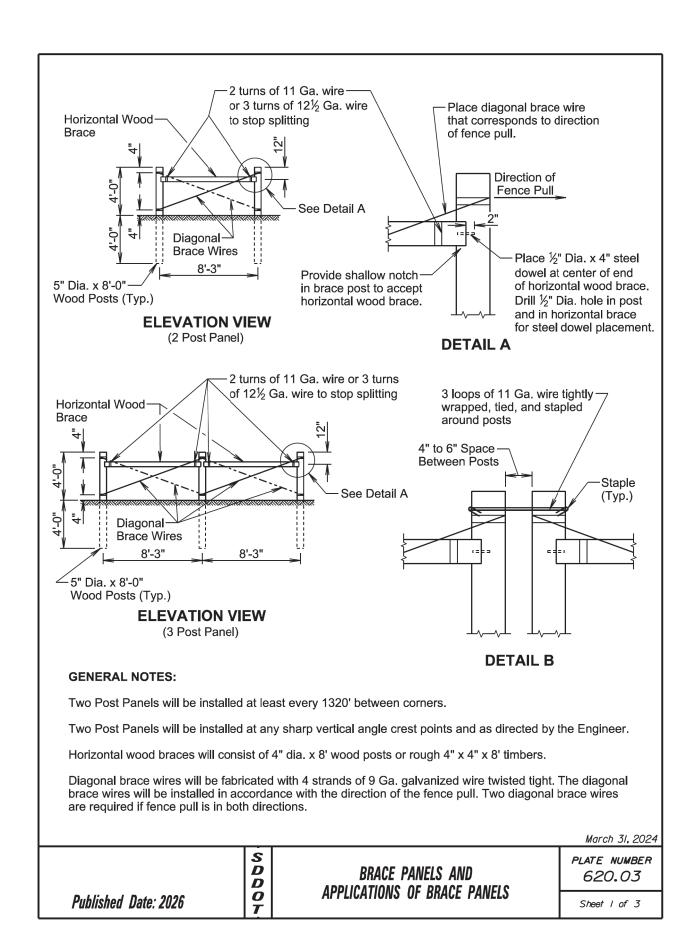
Right-of-Way fence on Interstate Projects will be constructed one foot within the Interstate Right-of-Way lines except at bridge openings, cattle passes, and as otherwise directed by the Engineer.

Right-of-Way fence other than on Interstate Projects will be constructed within one foot of the Right-of-Way on the Landowner's side except at bridge openings, cattle passes, and as otherwise directed by the Engineer.

Barbs will be fabricated from zinc coated 14 ga. wire. Two point barbs will be wrapped twice around one main strand at four-inch spacings and the four point barbs will be interlocked and wrapped around both main strands at five-inch spacings.

The gages of wire and wood post lengths and sizes are the minimum acceptable unless otherwise specified in the plans. The tolerances for steel posts will be as stated in AASHTO M281. Woven wire will conform to design and specifications of ASTM A116 and barbed wire will conform to ASTM A121.

June 26, 2019


S D D 0 Published Date: 2026

STAPLE INSTALLATION AND GENERAL RIGHT-OF-WAY FENCE NOTES

PLATE NUMBER 620.02

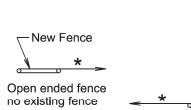
Sheet I of I

STATE OF PROJECT TOTAL SHEETS SHEET NH - P 0042(89) B26 B30 DAKOTA

Plotting Date:

use a 3 post panel.

08/11/2025

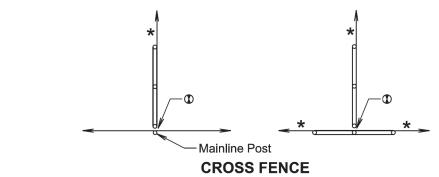

	SPACING OF 2 POS	ST PANELS WITHIN CURVES		GENERAL NOTE:
	RADIUS OF CURVE	SPACING OF 2 POST PANEL		All radius of superhors stated for forces and at
	Greater than 1800 Ft.	** 1320'		All radius of curvature stated for fence are at centerline of roadway.
	Less than 1800 Ft.	**At P.C., P.T., and at every 1320' between P.C. and P.T.		If fence length is less than 600' to next corner use
*	Fence lengths greater 2640' place 2 Post Par	than 1320' and less than nel approximately at midpoint.	*	a 2 post panel. If fence length is greater than 600' to next corner

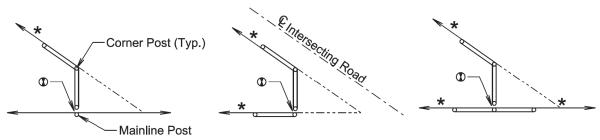
** 2640' place 2 Post Panel approximately at midpoint.

See Detail B on Sheet 1 of 3.

Existing

Fence

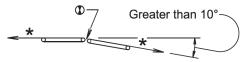



SHORT JOGS IN FENCE

BEGIN OR END FENCE

Fence

(Where new fence ties into existing fence)



SHARP ANGLES IN CROSS FENCE

Additional fence panel is NOT required when an angle in the mainline fence is 10° and less.

Additional fence panel is required when an angle in the mainline fence is greater than 10°.

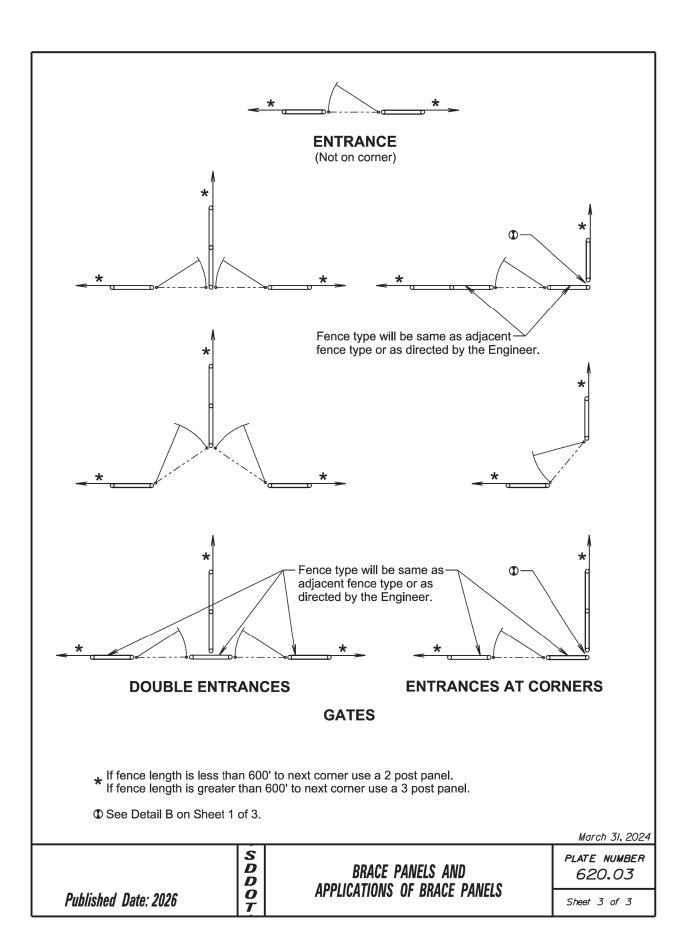
ANGLES IN MAINLINE FENCE

March 31, 2024

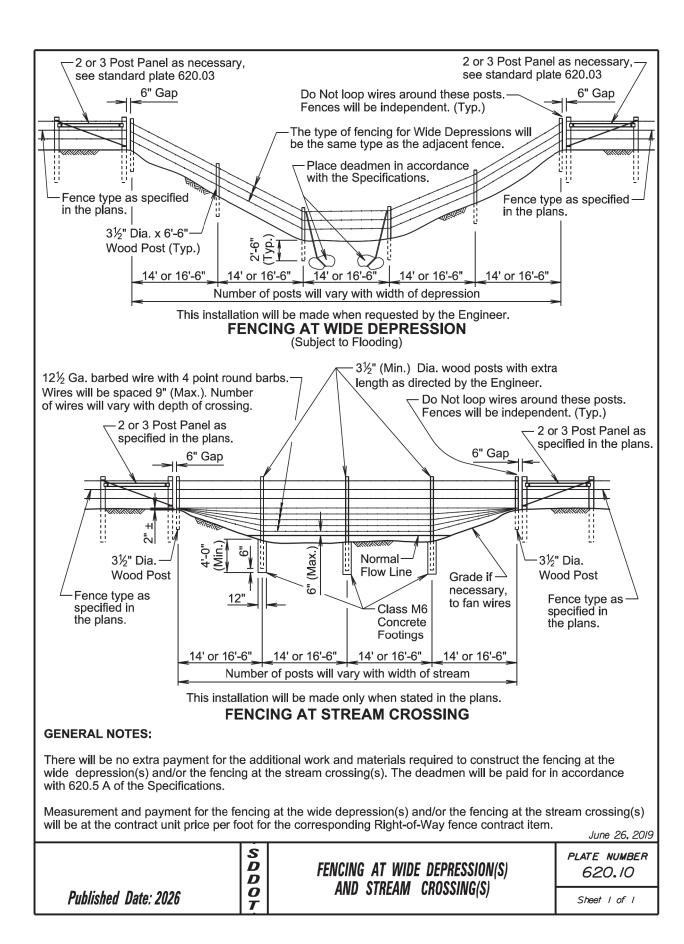
S D D O Published Date: 2026

BRACE PANELS AND APPLICATIONS OF BRACE PANELS PLATE NUMBER 620.03

Sheet 2 of 3

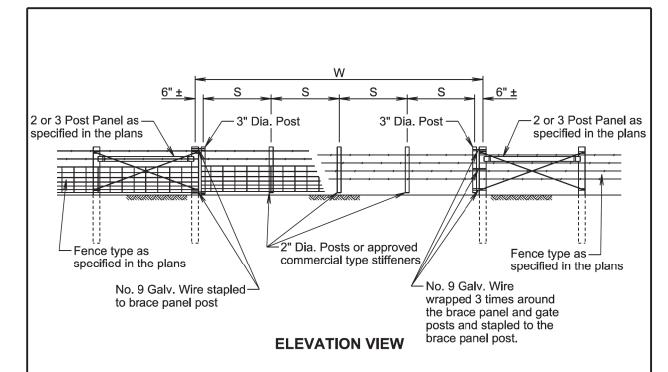

Sheet I of I

Plotting Date:


08/11/2025

-Structure -Structure Eye Bolts -Eye Bolts -2 Post Panel 2 Post 2 Post Panel Panel -Stream Crossing R.C. BOX CULVERT OR CATTLE PASS STRUCTURE WITH STREAM CROSSING FENCE ♀ Roadway - Structure - Use 3 Post Panels adjacent Wing Wall to flared ends when eye bolts are not in the wing walls. Eye Bolt--2 Post Panel Use 2 Post Panel if angle exceeds 10 degrees. 2 Post Panel-Stream Crossing if -7 specified in plans **R.C. BOX CULVERT BRIDGE OR CATTLE PASS** * If fence length is less than 600' to next corner use a 2 post panel. If fence length is greater than 600' use a 3 post panel. June 26, 2019 SDDOT PLATE NUMBER 620.04 BRACE PANEL APPLICATIONS AT STRUCTURES

Published Date: 2026



PROJECT. TOTAL SHEETS STATE OF SHEET NH - P 0042(89) B28 DAKOTA B30

Plotting Date:

08/11/2025

W Gate Width (Ft.)	S Post Spacing
16	3 @ 5'-0" ±
20	4 @ 4'-9" ±
24	4 @ 5'-9" ±
30	5 @ 5'-10" ±
40	6 @ 6'-6" ±

GENERAL NOTES:

Creosote treatment of the gate posts will not be accepted.

The type of fencing in the gate will be of the same type as specified for the adjacent Right-of-Way fence.

All costs for furnishing and constructing the wire gate(s) will be incidental to the contract unit price per foot for the respective Right-of-Way fence contract item.

June 26, 2019

PLATE NUMBER D D 620.20 **WIRE GATES** 0 Published Date: 2026 Sheet I of I

SOUTH DAKOTA NH - P 0042(89) B29 B30	STATE OF	PROJECT	SHEET	TOTAL SHEETS
		NH - P 0042(89)	B29	

Plotting Date:

08/11/2025

DETAIL 1	DETAIL 2	DETAIL 3
DETAIL 4	DETAIL 5	DETAIL 6
DETAIL 7	Type B Drainage Fabric (Typ.) DETAIL 8	DETAIL 9

S D D

Published Date: 2026

BANK AND CHANNEL PROTECTION GABION PLACEMENT UNDER PIPE END SECTIONS

PLATE NUMBER 720.03

February 14, 2020

Sheet I of 2

STANDARD SIZES SIZE LENGTH WIDTH HEIGHT NUMBER OF CAPACITY CELLS (Cu. Yd.) 6'-0" 3'-0" 3'-0" 2.0 9'-0" 3'-0" 3.0 3'-0" 12'-0" 3'-0" 3'-0" 4.0 6'-0" 3'-0" 1'-6" 1.0 1'-6" 9'-0" 3'-0" 1.5 2.0 12'-0" 3'-0" 1'-6" 3'-0" 1'-0" 0.7 6'-0" 1'-0" 9'-0" 3'-0" 1.0 1'-0" 1.3 12'-0" 3'-0"

GABION DETAILS

GENERAL NOTES:

Above dimensions subject to mill tolerances.

Lacing and internal connecting wire will be 0.0866 inch diameter steel wire ASTM A641, Class 3 soft temper measured after galvanizing and for PVC coated gabions will be 0.0866 inch diameter steel wire measured after galvanizing but before PVC coating.

The lacing procedure is as follows:

- 1. Cut a length of lacing wire approximately 1½ times the distance to be laced but not exceeding 5 feet.
- 2. Secure the wire terminal at the corner by looping and twisting.

D D O T

- 3. Proceed lacing with alternating single and double loops at a spacing not to exceed 6 inches.
- 4. Securely fasten the other lacing wire terminal.

Wire lacing or interlocking type fasteners will be used for gabion assembly and final construction of gabion structures. Interlocking fasteners for galvanized gabions will be high tensile 0.120 inch diameter galvanized steel wire measured after galvanizing. The galvanizing will conform to ASTM A641-92, Class 3 coating. Fasteners will also be in accordance with ASTM A764, Class II, Type III.

Interlocking fasteners for PVC coated gabions will be high tensile 0.120 inch diameter stainless steel wire conforming to ASTM A313, Type 302, Class 1. The spacing of the interlocking fasteners during all phases of assembly and construction will not exceed 6 inches.

All fasteners will be placed where the mesh weaves around the selvage wire at the vertical and horizontal joints.

February 14, 2020 PLATE NUMBER

Published Date: 2026

BANK AND CHANNEL PROTECTION GABIONS

Sheet I of I

720.01

	* ESTIMATED QUANTITIES			
		Pipe	Gabion	Type B
	Detail	Diameter		Drainage
				Fabric
		(Inches)	(Cu. Yd.)	(Sq. Yd.)
RCP, RCP Arch, CMP, and CMP Arch	1	12, 18, and 24	4.5	15
	2	30 and 36	6.0	19
	3	42	10.0	29
	4	48 and 54	12.0	34
	5	60	15.5	43
	6	66	17.0	47
	7	72	21.5	57
	8	78	26.0	68
	9	84	27.0	70

GENERAL NOTES:

Gabions at outlets of CMP and RCP will be placed under the end section a distance of 2 feet from the outlet end. For CMP end section installations, the upper fabric of the gabions will be modified to accommodate the metal end section as approved by the Engineer.

★ Gabion and type B drainage fabric quantities on this standard plate are based on standard gabion sizes D, E, and F as depicted on standard plate 720.01.

S D D O T

Type B drainage fabric will be placed under the gabions and around the exterior sides (perimeter) of the gabions as approved by the Engineer. The type B drainage fabric will be in conformance with Section 831 of the Specifications. Measurement and payment of the type B drainage fabric will be in conformance with Section 720 of the Specifications.

February 14, 2020

PLATE NUMBER 720.03

Published Date: 2026

BANK AND CHANNEL PROTECTION GABION PLACEMENT UNDER PIPE END SECTIONS

Sheet 2 of 2

 STATE OF SOUTH DAKOTA
 PROJECT
 SHEET
 TOTAL SHEETS

 NH - P 0042(89)
 B30
 B30

Plotting Date:

08/11/202

..\rd\prj\bute07NU\StdPlates.o

File -

RC11903